Skip to main content

Finite-Range Decomposition

  • Chapter
  • First Online:
  • 1209 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2242))

Abstract

Our implementation of the renormalisation group method relies on a finite-range decomposition of the Gaussian free field to allow progressive integration over scales. This requires an appropriate decomposition of the covariance of the Gaussian free field into a sum of simpler covariances. In this chapter, we provide a self-contained derivation of a finite-range covariance decomposition. This is easy for the case of the continuum, which we consider first. We then consider the lattice case, where the finite-range decomposition is generated by making use of the finite speed of propagation of the discrete wave equation. This then gives rise to a finite-range decomposition on the discrete torus. The finite-range decomposition provides our main motivation for the definition of the hierarchical model in Chap. 4, which is the focus of the book until Chap. 12 where Euclidean models are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Adams, R. Kotecký, S. Müller, Finite range decomposition for families of gradient Gaussian measures. J. Funct. Anal. 264, 169–206 (2013)

    Article  MathSciNet  Google Scholar 

  2. L.V. Ahlfors, Complex Analysis, 3rd edn. (McGraw-Hill Book Company, New York, 1978)

    Google Scholar 

  3. R. Bauerschmidt, A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MathSciNet  Google Scholar 

  4. G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Oliveri, E. Presutti, E. Scacciatelli, Some probabilistic techniques in field theory. Commun. Math. Phys. 59, 143–166 (1978)

    Article  MathSciNet  Google Scholar 

  5. G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Oliveri, E. Presutti, E. Scacciatelli, On the ultraviolet stability in the Euclidean scalar field theories. Commun. Math. Phys. 71, 95–130 (1980)

    Article  MathSciNet  Google Scholar 

  6. D.C. Brydges, G. Slade, A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)

    MATH  Google Scholar 

  7. D. Brydges, A. Talarczyk, Finite range decompositions of positive-definite functions. J. Funct. Anal. 236, 682–711 (2006)

    Article  MathSciNet  Google Scholar 

  8. D.C. Brydges, G. Guadagni, P.K. Mitter, Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  MathSciNet  Google Scholar 

  9. S. Buchholz, Finite range decomposition for Gaussian measures with improved regularity. J. Funct. Anal. 275, 1674–1711 (2018)

    Article  MathSciNet  Google Scholar 

  10. P.K. Mitter, On a finite range decomposition of the resolvent of a fractional power of the Laplacian. J. Stat. Phys. 163, 1235–1246 (2016). Erratum: J. Stat. Phys. 166, 453–455 (2017)

    Google Scholar 

  11. P.K. Mitter, On a finite range decomposition of the resolvent of a fractional power of the Laplacian II. The torus. J. Stat. Phys. 168, 986–999 (2017)

    Article  MathSciNet  Google Scholar 

  12. M. Reed, B. Simon, Fourier Analysis, Self-adjointness (Academic, New York, 1975)

    MATH  Google Scholar 

  13. E. Runa, Finite range decomposition for a general class of elliptic operators. Preprint (2015). https://arxiv.org/abs/1510.07604

  14. G. Slade, Critical exponents for long-range O(n) models below the upper critical dimension. Commun. Math. Phys. 358, 343–436 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauerschmidt, R., Brydges, D.C., Slade, G. (2019). Finite-Range Decomposition. In: Introduction to a Renormalisation Group Method. Lecture Notes in Mathematics, vol 2242. Springer, Singapore. https://doi.org/10.1007/978-981-32-9593-3_3

Download citation

Publish with us

Policies and ethics