Skip to main content

Chemical Looping Reforming (CLR) System for H2 Production—A Review

  • Conference paper
  • First Online:
Renewable Energy and Climate Change

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 161))

Abstract

Nowadays, world’s rising energy demand is satisfied by coal and petroleum based non-renewable fuels. But these fuels have some major drawbacks that these processes generate harmful oxidise like CO2, NOx. Out of these CO2 affects climate change of the whole world by producing global warming effect. Hydrogen can be use alternative to these energy sources due to its high energy generation per unit mass and low environmental impact compare to other fossil fuels. But the H2 is very less in nature. The steam reforming of methane is wildly used to harvest hydrogen from different fuels. It also produces CO2 and NOx. And the process cost of separating these gases from flue gases is consuming very high energy. The alternative to this technology is chemical looping reforming, that doesn’t produce NOx and CO2 can be easily separate. In this work authors try to compare different types of oxygen carriers used in many literatures by investigating their reactivity, crushing strength, and stability at different temperature. Also authors try to find most capable oxygen carrier (OC) for this system by considering OCs stability at higher temperatures and reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter, H.J., Knoche, K.F.: Reversibility of combustion processes. ACS Symp. Ser. 235, 71–85 (1983)

    Google Scholar 

  2. Halmann, M., Steinberg, M.: Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology. Lewis Publishers, Boca Raton, FL, USA (2000)

    Google Scholar 

  3. Bicelli, L.P.: Hydrogen: a clean energy source.9, 555-562 (1986)

    Google Scholar 

  4. Momirlan, M., Veziroglu, T.: Recent directions in world hydrogen production. Renew. Sustain. Rev. 3, 219–231 (1999)

    Google Scholar 

  5. Hassan, B., Shamim, T.: Effect of oxygen carriers on performance of power plants with chemical looping combustion. Procedia Eng. 56, 407–412 (2013)

    Google Scholar 

  6. Khana, M.N., Shamima, T.: Investigation of hydrogen production using chemical looping reforming. In: The 6th International Conference on Applied Energy—ICAE2014

    Google Scholar 

  7. Guerrero-Caballero, J., Kane, T., Haidar, N., Jalowiecki-Duhamel, L., Lofberg, A.: Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane. Catal. Today

    Google Scholar 

  8. Ryden, M., Lyngfelt, A.: Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int. J. Hydrog. Energy 31, 1271–1283 (2006)

    Google Scholar 

  9. Guo, L., Zhao, H., Zheng, C.: Synthesis gas generation by chemical-looping reforming of biomass with natural copper ore as oxygen carrier. Waste Biomass Valor 6, 81–89 (2015)

    Google Scholar 

  10. Keller, M., Fung, J., Leion, H., Mattisson, T.: Cu-impregnated alumina/silica bed materials for Chemical Looping Reforming of biomass gasification gas. Fuel 180, 448–456 (2016)

    Google Scholar 

  11. Alirezaei, I., Hafizi, A., Rahimpoura, M.R., Raeissi, S.: Application of zirconium modified Cu-based oxygen carrier in chemical looping reforming. J. CO2 Utilization 14, 112–121 (2016)

    Google Scholar 

  12. Rydén, M., Lyngfelt, A., Mattisson, T.: Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers. Energy Fuels 22, 2585–2597 (2008)

    Google Scholar 

  13. de Diego, L.F., Ortiz, M., Adánez, J., García-Labiano, F., Abad, A., Gayán, P.: Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem. Eng. J. 144, 289–298 (2008)

    Google Scholar 

  14. de Diego, L.F., Ortiz, M., Adánez, J., García-Labiano, F., Abad, A., Gayán, P.: Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. J. Power Sources 192, 27–34 (2009)

    Google Scholar 

  15. Ortiz, M., Abad, A., de Diego, L.F., García-Labiano, F., Gayán, P., Adánez, J.: Optimization of hydrogen production by chemical-looping auto-thermal reforming working with Ni-based oxygen-carriers. Int. J. Hydrogen Energy 36, 9663–9672 (2011)

    Google Scholar 

  16. Dueso, C., Ortiz, M., Abad, A., García-Labiano, F., de Diego, L.F., Gayán, P., Adánez, J.: Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming. Chem. Eng. J. 188, 142–154 (2012)

    Google Scholar 

  17. García-Labiano, L.F., de Diego, L.F., García-Díez, E., Serrano, A., Abad, A., Gayán, P., Adánez, J.: Combustion and reforming of ethanol in a chemical looping continuous unit. Energy Procedia 63, 53–62 (2014)

    Google Scholar 

  18. Yahom, A., Powell, J., Pavarajarn, V., Onbhuddha, P., Charojrochkul, S., Assabumrungrat, S.: Simulation and thermodynamic analysis of chemical looping reforming and CO2 enhanced chemical looping reforming. Chem. Eng. Res. Des (2014)

    Google Scholar 

  19. Jiang, B., Dou, B., Song, Y., Zhang, C., Du, B., Chen, H., Wanga, C., Yujie, X.: Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor. Chem. Eng. J. 280, 459–467 (2015)

    Google Scholar 

  20. Wang, W., Fan, L., Wang, G.: Study on chemical looping reforming of ethanol (CLRE) for hydrogen production using NiMn2O4 spinel as oxygen carrier. J. Energy Inst. 1–9 (2016)

    Google Scholar 

  21. Mattisson, T., Johansson, M., Jernda, E., Lyngfelt, A.: The reaction of NiO/NiAl2O4 particles with alternating methane and oxygen. Can. J. Chem. Eng. 86, 756–767 (2008)

    Google Scholar 

  22. Vizcaíno, A.J., Arena, P., Baronetti, G., Carrero, A., Calles, J.A., Laborde, M.A., et al.: Ethanol steam reforming on Ni/Al2O3 catalysts: effect of Mg addition. Int. J. Hydrog. Energy 33, 3489–3492 (2008)

    Google Scholar 

  23. Elias, K.F.M., Lucrédio, A.F., Assaf, E.M.: Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming. Int. J. Hydrogen Energy 38, 4407–4417 (2013)

    Google Scholar 

  24. Hossain, M.M., de Lasa, H.I.: Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem. Eng. Sci. 63, 4433–4451 (2008)

    Google Scholar 

  25. Forutan, H.R., Karimi, E., Hafizi, A., Rahimpour, M.R., Keshavarz, P.: Expert representation chemical looping reforming: a comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3. J. Ind. Eng. Chem. 21, 900–911 (2015)

    Google Scholar 

  26. Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D.W., Zeng, L., Fan, L.S.: Parametric and dynamic studies of an iron-based 25-kW(th) coal direct chemical looping unit using sub-bituminous coal. Appl. Energy 145, 354–363 (2015)

    Google Scholar 

  27. Siriwardane, R., Tian, H., Fisher, J.: Production of pure hydrogen and synthesis gas with CueFe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming. Int. J. hydrogen Energy 40, 1698–1708 (2015)

    Google Scholar 

  28. Hafizi, A., Rahimpour, M.R., Hassanajili, S.: Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process. Int. J. hydrogen Energy 40, 16159–16168 (2015)

    Google Scholar 

  29. Nam, H., Wang, Z., Shanmugam, S.R., Adhikari, S., Abdoulmoumine, N.: Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor. Int. J. hydrogen Energy 43, 18790–18800 (2018)

    Google Scholar 

  30. Keller, M., Anderson, D.P., Leion, H., Mattisson, T.: Chemical Looping Tar reforming with Fe, Sr-doped La2Zr2O7 pyrochlore supported on ZrO2. Appl. Catal. A: Gen.

    Google Scholar 

  31. Wei, G., Huang, J., Fana, Y., Huang, Z., Zheng, A., He, F., Meng, J., Zhang, D., Zhao, K., Zhao, Z., Li, H.: Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors. Energy Convers. Manage. 179, 304–313 (2019)

    Google Scholar 

  32. Solunke, R.D., Veser, G.: Hydrogen production via chemical looping steam reforming in a periodically operated fixed-bed reactor. Ind. Eng. Chem. Res. 49, 11037–11044 (2010)

    Google Scholar 

  33. Svoboda, K., Siewiorek, A., Baxter, D., Rogut, J., Puncochar, M.: Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures. Chem. Pap. 61, 110–120 (2007)

    Google Scholar 

  34. Gupta, P., Velazquez-Vargas, L.G., Fan, L.-S.: Syngas redox (SGR) process to produce hydrogen from coal derived syngas. Energy Fuels 21, 2900–2908 (2007)

    Google Scholar 

  35. Fan, L.-S., Li, F.X., Kim, H.R., Sridhar, D., Wang, F., Zeng, L., et al.: Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels 23, 4182–4189 (2009)

    Google Scholar 

  36. Cha, K.-S., Yoo, B.-K., Kim, H.-S., Ryu, T.-G., Kang, K.-S., Park, C.-S., et al.: A study on improving reactivity of Cu-ferrite/ZrO2 medium for syngas and hydrogen production from two-step thermochemical methane reforming. Int. J. Energy Res. 34, 422–430 (2010)

    Google Scholar 

  37. Otsuka, K., Ushiyama, T., Yamanaka, I.: Partial oxidation of methane using the redox of cerium oxide. Chem. Lett. 22, 1517–1520 (1993)

    Google Scholar 

  38. Zhu, X., Wang, H., Wei, Y., Li, K., Cheng, X.: Hydrogen and syngas production from twostep steam reforming of methane using CeO2 as oxygen carrier. J. Nat. Gas Chem. 20, 281–286 (2011)

    Google Scholar 

  39. Wei, Y., Wang, H., He, F., Ao, X., Zhang, C.: CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: thermodynamic analysis and experimental investigation. J. Nat. Gas Chem. 16, 6–11 (2007)

    Google Scholar 

  40. He, F., Wei, Y.G., Li, H.B., Wang, H.: Synthesis Gas Generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn Oxides. Energy Fuels 23, 2095–2102 (2009)

    Google Scholar 

  41. Pojanavaraphan, C., Satitthai, U., Luengnaruemitchai, A., Gulari, E.: Activity and stability of Au/CeO2–Fe2O3 catalysts for the hydrogen production via oxidative steam reforming of methanol. J. Ind. Eng. Chem. 22, 41–52 (2015)

    Google Scholar 

  42. Fathi, M., Bjorgum, E., Viig, T., Rokstad, O.A.: Partial oxidation of methane to synthesis gas: elimination of gas phase oxygen. Catal. Today 63, 489–497 (2000)

    Google Scholar 

  43. Zheng, Y., Li, K., Wang, H., Tian, D., Wang, Y., Zhu, X., et al.: Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Appl. Catal. B: Environ. 202, 51–63 (2017)

    Google Scholar 

  44. Wei, Y., Wang, H., Li, K.: Ce–Fe–O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas. J. Rare Earths 28, 560–565 (2010)

    Google Scholar 

  45. Li, K., Wang, H., Wei, Y., Yan, D.: Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: effect of calcination temperature. Int. J. Hydrogen Energy 36, 3471–3482 (2011)

    Google Scholar 

  46. Yaremchenko, A.A., Kharton, V.V., Veniaminov, S.A., Belyaev, V.D., Sobyanin, V.A., Marques, F.M.B.: Methane oxidation by lattice oxygen of CeNbO4+δ. Catal. Commun. 8, 335–339 (2007)

    Google Scholar 

  47. Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M., et al.: Enhanced activity of CeO2—ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure. Energy Fuels 30, 638–647 (2016)

    Google Scholar 

  48. Yonggang, W., Hua, W., Li, K., Liu, M., Xianquan, A.: Preparation and performance of Ce/Zr mixed oxides for direct conversion of methane to syngas. J Rare Earths 25, 110 (2007)

    Google Scholar 

  49. Zhu, X., Du, Y., Wang, H., Wei, Y., Li, K., Sun, L.: Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation. J. Rare Earths 32, 824–830 (2014)

    Google Scholar 

  50. Li, K., Wang, H., Wei, Y., Yan, D.: Syngas production from methane and air via a redox process using Ce–Fe mixed oxides as oxygen carriers. Appl. Catal. B: Environ. 97, 361–372 (2010)

    Google Scholar 

  51. Zhu, X., Wei, Y., Wang, H., Li, K.: Ce–Fe oxygen carriers for chemical-looping steam methane reforming. Int. J. Hydrogen Energy 38, 4492–4501 (2013)

    Google Scholar 

  52. Cheng, X., Wang, H., Wei, Y., Li, K., Zhu, X.: Preparation and characterization of Ce–FeZr–O(x)/MgO complex oxides for selective oxidation of methane to synthesize gas. J. Rare Earths 28, 316–321 (2010)

    Google Scholar 

  53. Bhavsar, S., Veser, G.: Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane. RSC Adv. 4, 47254–47267 (2014)

    Google Scholar 

  54. Pantu, P., Kim, K., Gavalas, G.R.: Methane partial oxidation on Pt/CeO2–ZrO2 in the absence of gaseous oxygen. Appl. Catal. A: Gen. 193, 203–214 (2000)

    Google Scholar 

  55. Wang, W., Fan, L., Wang, G.: Study on chemical looping reforming of ethanol (CLRE) for hydrogen production using NiMn2O4 spinel as oxygen carrier. J. Energy Inst. 1–9 (2016)

    Google Scholar 

  56. Hu, J., Galvita, V., Poelman, H., Marin, G.B.: Advanced chemical looping materials for CO2 utilization: a review. Materials 11, 1187 (2018)

    Google Scholar 

  57. Huang, J., Liu, W., Hu, W., Metcalfe, I., Yang, Y., Liu, B.: Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications. Appl. Energy 236, 635–647 (2019)

    Google Scholar 

  58. Wang, D., Jin, L., Li, Y., Wei, B., Yao, D., Hu, H.: Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides. Fuel 239, 764–773 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mit Pujara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pujara, M., Sheth, M., Rachchh, N., Bhoraniya, R., Harichandan, A.B. (2020). Chemical Looping Reforming (CLR) System for H2 Production—A Review. In: Deb, D., Dixit, A., Chandra, L. (eds) Renewable Energy and Climate Change. Smart Innovation, Systems and Technologies, vol 161. Springer, Singapore. https://doi.org/10.1007/978-981-32-9578-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9578-0_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9577-3

  • Online ISBN: 978-981-32-9578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics