Skip to main content

Role of Algae in CO2 Sequestration Addressing Climate Change: A Review

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 161))

Abstract

Climate change is the change in average conditions of weather during a long time period, due to increased addition of greenhouse gases (GHG) to earth’s atmosphere. Industrialization and deforestation have been identified as primary causes of increased GHG in which carbon dioxide (CO2) is the major factor, accounting for over half of the warming potential. Increase in CO2 level in atmosphere needs to be addressed by effective and sustainable carbon sequestration technologies. Out of numerous CO2 sequestration technologies, biological methods using algae could be one of the most efficient and economical ways. Algae can be extensively used for utilizing CO2 and the resulting biomass may be used for producing biofuel and multiple value-added products. Many countries have started implementing carbon credits with a fiscal value as price of polluting the air. This has spread awareness worldwide and attracted investments in carbon sequestration via microalgae cultivation. This review summarizes the global research status of utilizing microalgae in CO2 sequestration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brennan, L., Owende, P.: Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)

    Article  Google Scholar 

  2. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., Langenhove, H.V.: Enhanced CO2 fixation and biofuels production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380 (2011)

    Google Scholar 

  3. Australian climate science capability review Australian academy of science (2017). www.science.org.au/climate-science-capability-review

  4. Chamberlin, T.C.: An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J. Geology. 7, 575, 667, 751 (1899)

    Google Scholar 

  5. Weart, S.: General circulation models of climate. In: The Discovery of Global Warming (2011)

    Google Scholar 

  6. World Meteorological Organisation (WMO): Report of the International Conference on the Assessment of the Role of Carbon Dioxide and of Other Greenhouse Gases in Climate Variations and Associated Impacts. Villach, Austria (1986)

    Google Scholar 

  7. Joyce, C.: Get This: Warming Planet Can Mean More Snow. NPR (2010)

    Google Scholar 

  8. Schneider: Assessing Key Vulnerabilities and the Risk from Climate Change. Ecosystems and biodiversity, in IPCC AR4 WG2 (2007)

    Google Scholar 

  9. Battisti, David S., Naylor, Rosamond L.: Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911), 240–244 (2009)

    Article  Google Scholar 

  10. Singh, S., Dixit, K., Sundaram, S.: Algal based carbon dioxide sequestration technology & Global scenario of carbon credit: a review. Am. J. Eng. Res. 3(4), 35–39 (2014). ISSN: 2320: 0936

    Google Scholar 

  11. Berberoglu, H., Gomez, P.S., Pilon, L.: Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J. Quant. Spectrosc. 110, 1879–93 (2009)

    Google Scholar 

  12. Wang, L.A., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y.H.: Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174–86 (2008)

    Google Scholar 

  13. Khan, S.A., Rashmi, Hussain, M.Z., Prasad, S., Banerjee, U.C.: Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 13, 2361–2372 (2009)

    Google Scholar 

  14. Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., Bux, F.: Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 02, 57–70 (2011)

    Article  Google Scholar 

  15. Falkowski, P.G., Raven, J.A.: Aquatic Photosynthesis. p. 375, Blackwater Science, London (1997)

    Google Scholar 

  16. Ynalvez, R.A., Dinamarca, J., Moroney, J.V.: Algal Photosynthesis (2018). https://doi.org/10.1002/9780470015902.a0000322.pub3

  17. Sahoo, D., Elangbam, G., Devi, S.S.: Using algae for carbon dioxide capture and bio-fuel production to combat climate change. Phykos 42(1), 32–38 (2012)

    Google Scholar 

  18. Solomon, S.D., Qin, D., Manning, M., Chen, Z., Marquie, M., Averyt, K.B., Tignor, M., Miller, H.L.: The Physical Science Basis, Contribution of Working Group I to the Forth Assessment Report of the IPCC on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  19. Parr, J.F., Sullivan, L.A.: Soil carbon sequestration in phytoliths. Soil Biol. Biochem. 37, 117–124 (2005)

    Article  Google Scholar 

  20. Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Prog. 24, 815–820 (2008)

    Google Scholar 

  21. Maeda, K., Owada, M., Kimura, N., Omata, K.: Karube I: CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage. 36, 717–720 (1995)

    Article  Google Scholar 

  22. Metting, F.B.: Biodiversity and application of microalgae. J. Ind. Microbiol. 17(5–6), 477–489 (1996)

    Google Scholar 

  23. Milledge, J.J.: Commercial application of microalgae other than as biofuels: a brief review. Rev. Environ. Sci. Biotechnol. 10, 31–41 (2011)

    Google Scholar 

  24. Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., Posewitz, M.C.: Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235–240 (2008)

    Article  Google Scholar 

  25. Cantrell, K.B., Ducey, T., Ro, K.S., Hunt, P.G.: Livestock waste-to-bioenergy generation opportunities. Biores. Technol. 99(17), 7941–7953 (2008)

    Article  Google Scholar 

  26. Ashokkumar, V., Rengasamy, R.: Mass culture of Botryococcus braunii Kutz. Under open raceway pond for biofuel production. Bioresour. Technol. 104, 394–399 (2012)

    Google Scholar 

  27. Mandal, S., Mallick, N.: Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281–291 (2009)

    Article  Google Scholar 

  28. Gouveia, L., Marques, A., da Silva, T., Reis, A.: Neochloris oleabundans UTEX#1185: a suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 36, 821–826 (2009)

    Article  Google Scholar 

  29. Lamers, P.P., Janssen, M., De Vos, R.C.H., Bino, R.J., Wijffels, R.H.: Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotecnol. 26, 631–638 (2008)

    Article  Google Scholar 

  30. Lorenz, R.T., Cysewski, G.R.: Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18, 160–167 (2000)

    Article  Google Scholar 

  31. Khan, Z., Bhadouria, P., Bisen, P.S.: Nutritional and therapeutic potential of spirulina. Curr. Pharm. Biotechnol. 6, 373–379 (2005)

    Article  Google Scholar 

  32. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.: Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)

    Article  Google Scholar 

  33. Gladue, R., Maxey, J.: Microalgal feeds for aquaculture. J. Appl. Phycol. 6, 131–141 (1994)

    Article  Google Scholar 

  34. Pulz, O., Gross, W.: Valuable products from biotechnology of microalgae App Microbiol. Biotechnol. 65, 635–648 (2004)

    Google Scholar 

  35. Coates, R.C., Trentacoste, E.M., Gerwick, W.H.: Bioactive and novel chemicals from microalgae. In: Richmond, A., Hu, Q. (eds.) Handbook of Microalgal Culture. Applied Phycology and Biotechnology. pp. 504–531, Wiley, Oxford (2013)

    Google Scholar 

  36. Cheng, I., Zhang, I., Chen, H., Gao, C.: Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Purif. Technol. 50, 324–329 (2006)

    Article  Google Scholar 

  37. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S.: Reduction of CO2 by a high density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99, 3389–3396 (2008)

    Google Scholar 

  38. De Morais, M.G., Costa, J.A.V.: Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29, 1349–1352 (2007)

    Google Scholar 

  39. Kodama, M., Ikemoto, H., Miyachi, S.: A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. J. Mar. Biotechnol. 9(1), 21–25 (1993)

    Google Scholar 

  40. Sung, K.D., Lee, J.S., Shin, C.S. Park, S.C., Choi, M.J.: CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour. Technol. 68(3), 269–273 (1999)

    Google Scholar 

  41. Kodama: Cloning and characterization of high-CO2-specific cDNAs from a Marine Microalga, Chlorococcum littorale, and effect of CO2 concentration and iron deficiency on the gene expression. 39(2), 131–138 (1993)

    Google Scholar 

  42. Mukherjee, B., Moroney, J.V.Z.: Algal Carbon Dioxide Concentrating Mechanisms. John Wiley & Sons Ltd. (2011)

    Google Scholar 

  43. Seckbach: Growth pattern and isotope fractionation of Cyanidium caldarium and hot spring algal mats. 12(3), 161–169 (1971)

    Google Scholar 

  44. Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D.J., Karube, I.: Tolerance of microalgae to high CO2 and high temperature. Phytochem 31(10), 3345–3348 (1992)

    Article  Google Scholar 

  45. Nakano: Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). 273(5272), 245–248 (1996)

    Google Scholar 

  46. Yoshihara, K., Nagase, H., Eguchi, K., Hirata, K., Miyamoto, K.: Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalgae NOE-113 cultivated in long tubular photobioreactor. J. Ferment. Bioeng. 4, 351–354 (1996)

    Article  Google Scholar 

  47. Matsumoto, H., Shioji, N., Hamasaki, A., Ikuta, Y., Fukuda, Y., Sato, M., Endo, N., Tsukamoto, T.: Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl. Biochem. Biotechnol. 51(52), 681–692 (1995)

    Article  Google Scholar 

  48. Bayless, D.J., Kremer, G.G., Prudich, M.E., Stuart, B.J., Vis-Chiasson, M.L., Cooksey, K., Muhs, J.: Enhanced practical photosynthetic CO2 mitigation. In: Proceedings of the First National Conference on Carbon Sequestration, vol. 5, pp. 1–14 (2001)

    Google Scholar 

  49. Miyairi, S.: CO2 assimilation in a thermophilic cyanobacterium. Energy Conver. Mgmt. 36, 763–766 (1995)

    Article  Google Scholar 

  50. U. S. Energy Information Administration. Electricity Explained Basics (2016)

    Google Scholar 

  51. Oilgae Report.: The comprehensive guide for algae-based carbon capture (2011). http://www.oilgae.com/ref/report/download.php?

  52. Chisti, Y.: Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26, 126–131 (2008)

    Article  Google Scholar 

  53. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)

    Article  Google Scholar 

  54. https://unfccc.int/resource/docs/publications/08unfccc_kp_refmanual.pdf

  55. Kyoto Protocol: Reference Manual on accounting of emissions and assigned amount. United Nations Framework Convention on Climate Change (2005)

    Google Scholar 

  56. Singh, U.B., Ahluwalia, A.S.: Microalgae: a promising tool for carbon sequestration. Mitigation Adapt. Strat. Glob. Change (2013)

    Google Scholar 

  57. Chapin, F.S., Rupp, T.S., Starfield, A.M., DeWilde, L.-O., Zavaleta, E.S., Fresco, N., Henkelman, J., David McGuire, A.: Planning for resilience: modeling change in human fire interactions in the Alaskan boreal forest. Front. Ecol. Environ. 1(5), 255–261 (2003)

    Google Scholar 

  58. Folger, P.: The carbon cycle: implications for climate change and congress congressional research service report RL34059. 7–57 (2009)

    Google Scholar 

  59. Singh, U.B.: Microalgae: a promising tool for carbon sequestration, Mitig. Adapt. Strat. Glob. Change (2012)

    Google Scholar 

  60. Meinshausen, M., Meinshausen, N.,  Hare, W., Raper, S.C.B., Frieler, K., Knutti, R., Frame, D.F., Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2  °C. Nature 458(7242), 1158–1162 (2009)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Sridharan Govindachary for his motivation and continuous support during the process of writing and publication of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, V., Chandra Shekharaiah, P.S., Kushwaha, S., Sapre, A., Dasgupta, S., Sanyal, D. (2020). Role of Algae in CO2 Sequestration Addressing Climate Change: A Review. In: Deb, D., Dixit, A., Chandra, L. (eds) Renewable Energy and Climate Change. Smart Innovation, Systems and Technologies, vol 161. Springer, Singapore. https://doi.org/10.1007/978-981-32-9578-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9578-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9577-3

  • Online ISBN: 978-981-32-9578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics