Skip to main content

Rare Earth Oxides Based Composites for High Voltage Supercapacitors Applications: A Short Review

  • Conference paper
  • First Online:
Renewable Energy and Climate Change

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 161))

Abstract

Supercapacitors (SCs) are energy storage devices with high power density and robust charge/discharge life cycles. The high power density of these energy storage devices makes them attractive storage devices in conjunction with other reversible electrical energy storage devices such as batteries and conventional capacitors. The common SCs are made of nanostructured carbonous electrode materials, which are limited with their relatively lower operating window and specific energy densities. Nanostructured metal oxide based carbonous composites are widely explored to overcome carbonous SCs. Rare earth (RE) oxides such as Nd2O3, Y2O3, and Eu2O3 are used in conjunction with carbonous/conducting polymers matrix for high specific density and operating voltage supercapacitors. The high band gap of RE oxides assists in achieving higher operating voltage window. The article will review the current status of RE oxide based supercapacitors and their physical properties in conjunction with underlying physical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Wong, C.P.: Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul. 15(5), 1322–1328 (2008)

    Article  Google Scholar 

  2. Li, J.Y., Zhang, L., Ducharme, S.: Electric energy density of dielectric nanocomposite. Appl. Phys. Lett. 90(13), 132901 (2017)

    Article  Google Scholar 

  3. Saha, S.K.: Nanodielectrics with giant permittivity. Bull. Mater. Sci. 31(3), 473–477 (2008)

    Article  Google Scholar 

  4. Gidwani, M., Bhagwani, A., Rohra, N.: Supercapacitors: the near future of batteries. Int. J. Eng. Inundations 4, 22–27 (2014)

    Google Scholar 

  5. Bikky, R.: Fabrication and Characterization of Polymer-based High-K Nanodielectrics for Embedded Capacitor Applications. Dissertation University of Houston (2010)

    Google Scholar 

  6. Kotz, R., Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15-16), 2483–2498 (2000)

    Article  Google Scholar 

  7. Halper, M.S., Ellenbogen, J.C.: Supercapacitors: A Brief Overview. The MITRE Corporation, McLean, Virginia, USA, pp. 1–34 (2006)

    Google Scholar 

  8. Conway, B.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer-Plenum (1999)

    Google Scholar 

  9. Burke, A.: Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)

    Article  MathSciNet  Google Scholar 

  10. Maxwell Technologies, Inc. (https://www.maxwell.com/)

  11. Berenguer, R.: Trends and Research Challenges in Supercapacitors (2015)

    Google Scholar 

  12. Patrice, S., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7(11), 845 (2008)

    Article  Google Scholar 

  13. Majumder, M., Choudhary, R.B., Thakur, A.K., Rout, C.S., Gupta, G.: Rare earth metal oxide (RE2O3, RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. New J. Chem. 42(7), 5295–5308 (2018)

    Article  Google Scholar 

  14. Bamidele, Y., Peng, C., George, Z.C.: Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162(5), A5054–A5059 (2015)

    Article  Google Scholar 

  15. Snook, G.A., Kao, P., Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2012)

    Article  Google Scholar 

  16. Li, H.: Effect Nd2O3 content on electrochemical performance of polyaniline/Nd2O3 composites. Polym. Adv. Technol. 25(10), 1163–1168 (2014)

    Article  Google Scholar 

  17. Majumder, M.: Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv. 7(32), 20037–20048 (2017)

    Article  Google Scholar 

  18. Thakur, A.K.: In-situ integration of waste coconut shell derived activated carbon/polypyrrole/rare earth metal oxide (Eu2O3): a novel step towards ultrahigh volumetric capacitance. Electrochim. Acta 251, 532–545 (2017)

    Article  Google Scholar 

  19. Shiri, H.M., Ehsani, A., Khales, M.J.: Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors. J. Colloid Interface Sci. 505, 940–946 (2017)

    Article  Google Scholar 

  20. Nadarajan, A., Tin, Pan G., Thomas, C.K.Y.: The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys. 7, 920–926 (2017)

    Article  Google Scholar 

  21. Dongyang, D.: Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: facile synthesis and electrochemical performances as supercapacitor electrode materials. Physica E 86, 284–291 (2017)

    Article  Google Scholar 

  22. Shiri, H.M., Ehsani, A.: Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device. J. Colloid Interface Sci. 484, 70–76 (2016)

    Article  Google Scholar 

  23. Naderi, H.R.: Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adv. 6(56), 51211–51220 (2016)

    Article  Google Scholar 

  24. Wang, Y.: Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5(4), 1667–1689 (2015)

    Article  Google Scholar 

  25. Zheng, J.P., Cygan, P.J., Jow, T.R.: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699–2703 (1995)

    Article  Google Scholar 

  26. Li, H., Wang, R., Cao, R.: Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous Mesoporous Mater. 111(1–3), 32–38 (2008)

    Article  Google Scholar 

  27. Devaraj, S.: Mesoporous MnO2 and its capacitive behavior. Electrochem. Solid-State Lett. 15(4), A57–A59 (2012)

    Article  Google Scholar 

  28. Zhi and Jian: Highly ordered metal oxide nanorods inside mesoporous silica supported carbon nanomembranes: High performance electrode materials for symmetrical supercapacitor devices. J. Phys. Chem. C 119(16), 8530–8536 (2015)

    Article  Google Scholar 

  29. Yang, M.: Mesoporous slit-structured NiO for high-performance Pseudocapacitors. Phys. Chem. Chem. Phys. 14(31), 11048–11052 (2012)

    Article  Google Scholar 

  30. Wang, X.: Cryogel synthesis of hierarchical interconnected macro-/mesoporous Co3O4 with superb electrochemical energy storage. J. Phys. Chem. C 116(7), 4930–4935 (2012)

    Article  Google Scholar 

  31. Lang, J., Yan, X., Xue, Q.: Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. J. Power Sources 196(18), 7841–7846 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Author Ajay Tiwari highly acknowledges UGC-DAE Consortium for financial assistance under the project CRS-M-221 for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambesh Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, A., Dixit, A. (2020). Rare Earth Oxides Based Composites for High Voltage Supercapacitors Applications: A Short Review. In: Deb, D., Dixit, A., Chandra, L. (eds) Renewable Energy and Climate Change. Smart Innovation, Systems and Technologies, vol 161. Springer, Singapore. https://doi.org/10.1007/978-981-32-9578-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9578-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9577-3

  • Online ISBN: 978-981-32-9578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics