Skip to main content

Classification of Radio Galaxy Images with Semi-supervised Learning

  • Conference paper
  • First Online:
Book cover Data Mining and Big Data (DMBD 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1071))

Included in the following conference series:

Abstract

The physical mechanism of galaxies lead to their complicated appearances, which could be categorized and require thorough study. Though millions of radio components have been detected by the telescopes, the number of radio galaxies, whose morphologies are well-labeled and categorized, is very few. In this work, we try to mind the features of radio galaxies and classify them with a semi-supervised learning strategy. An autoencoder based on the VGG-16 net is constructed first and pre-trained with unlabeled large-scale dataset to extract the general features of the radio galaxies, and then fine-tuned with labeled small-scale dataset to obtain a morphology classifier. Experiments are designed and demonstrated based on the observations from the Faint Images of the Radio Sky at Twenty-Centimeters Survey (FIRST), where we focus on the classification of three typical morphology types namely Fanaroff-Riley Type I/II (FRI/II), and the bent tailed (C-shape) galaxies. Compared to transfer learning on the same VGG-16 network, which was not trained with enough astronomical images and may suffer from a data-unseen problem, our semi-supervised approach achieves better performance at both high and balanced precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FIRSTcutout: https://third.ucllnl.org/cgi-bin/firstcutout.

References

  1. Padovani, P., et al.: Active galactic nuclei: what’s in a name? Annu. Rev. Astron. Astr. 25, 2 (2017)

    Article  Google Scholar 

  2. Koopmans, L., et al.: The cosmic dawn and epoch of reionisation with SKA. In: Advancing Astrophysics with the Square Kilometre Array (AASKA14), vol. 1 (2015)

    Google Scholar 

  3. Wang, J., et al.: How to identify and separate bright galaxy clusters from the low-frequency radio sky. Astronphy. J. 723, 620–633 (2010)

    Article  Google Scholar 

  4. Hancock, P.J., Murphy, T., Gaensler, B.M., Hopkins, A., Curran, J.R.: Compact continuum source finding for next generation radio surveys. Mon. Not. R. Astron. Soc. 422, 1812–1824 (2012)

    Article  Google Scholar 

  5. Mohan, N., Rafferty, D.: PyBDSF: Python Blob Detection And Source Finder. Astrophysics Source Code Library (2015)

    Google Scholar 

  6. Chapman, E., et al.: Foreground removal using fastica: a showcase of LOFAR-EoR. Mon. Not. R. Astron. Soc. 423(3), 2518–2532 (2012)

    Article  Google Scholar 

  7. Chapman, E., Zaroubi, S., Abdalla, F.B., Dulwich, F., Jelić, V., Mort, B.: The effect of foreground mitigation strategy on EoR window recovery. Mon. Not. R. Astron. Soc. 458, 2928–2939 (2016)

    Article  Google Scholar 

  8. Fanaroff, B.L., Riley, J.M.: The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31P–36P (1974)

    Article  Google Scholar 

  9. Rudnick, L., Owen, F.N.: Head-tail radio sources in clusters of galaxies. Astrophys. J. L. 203, L107–L111 (1976)

    Article  Google Scholar 

  10. Proctor, D.D.: Morphological annotations for groups in the first database. Astrophys. J. Suppl. Ser. 194, 31 (2011)

    Article  Google Scholar 

  11. Becker, R.H., White, R.L., Helfand, D.J.: The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys. J. 450, 559 (1995)

    Article  Google Scholar 

  12. Best, P.N., Heckman, T.M.: On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012)

    Article  Google Scholar 

  13. Aniyan, A.K., Thorat, K.: Classifying radio galaxies with the convolutional neural network. Astrophys. J. Suppl. Ser. 230, 20 (2017)

    Article  Google Scholar 

  14. Capetti, A., Massaro, F., Baldi, R.D.: FRICAT: a FIRST catalog of FR I radio galaxies. Astron. Astrophys. 598, A49 (2017)

    Article  Google Scholar 

  15. Capetti, A., Massaro, F., Baldi, R.D.: FRIICAT: a FIRST catalog of FR II radio galaxies. Astron. Astrophys. 601, A81 (2017)

    Article  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ArXiv e-prints (2014)

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  20. Rosenstein, M., Marx, Z., Kaelbling, L., Dietterich, T.: To transfer or not transfer. In: NIPS 2005 Workshop on Transfer Learning, Vancouver, Canada, vol. 1 (2005)

    Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE, Miami (2009)

    Google Scholar 

  22. Ma, Z., Xu, H., Zhu, J., et al.: A machine learning based morphological classification of 14,251 radio AGNs selected from the best-Heckman sample. Astron. J. Suppl. S. 240(34), 1–21 (2019)

    Google Scholar 

  23. Hogg, D.W.: Confusion Errors in Astrometry and Counterpart Association. Astron. J. 121, 1207–1213 (2001)

    Article  Google Scholar 

  24. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? ArXiv e-print arXiv:1703.04977 (2017)

  25. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. J. Mach. Learn. Res. 15(106), 275 (2011)

    Google Scholar 

  26. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. ArXiv e-print arXiv:1412.6980 (2014)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 11433002) and the National Key Research and Discovery Plan Nos. 2017YFF0210903 and 2018YFA0404601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Z., Zhu, J., Zhu, Y., Xu, H. (2019). Classification of Radio Galaxy Images with Semi-supervised Learning. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2019. Communications in Computer and Information Science, vol 1071. Springer, Singapore. https://doi.org/10.1007/978-981-32-9563-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9563-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9562-9

  • Online ISBN: 978-981-32-9563-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics