Skip to main content

Studies on Recycled Polyester

  • Chapter
  • First Online:
Recycled Polyester

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

In this chapter, poly(ethylene terephthalate) (PET) melt-spun fibres from five different PET materials were fabricated by a capillary rheometer, which was equipped with an air aspirator for aerodynamic stretching. Two recycled PET of coloured rPET-A and clear rPET-B from waste PET bottle flakes were used, and three virgin PET with different grades of the bottle-grade vPET-2, fibre-grade vPET-1 and fibre-grade vPET-3 were chosen as reference benchmark. During the extrusion process, two processing temperatures of 270 and 280 °C in the capillary rheometer were applied, combined with six different take-up pressures from 0.5 to 3.0 bar for fibre stretching during the spinning process. An empirical equation was given, to predict the water content of PET materials under the specific drying temperature and drying time. Afterwards, the characteristics of the raw materials and drawn PET fibres were discussed comprehensively from the perspective of thermal behaviour, molar mass characteristic, rheological properties, surface morphology, diameter, tenacity and elongation at break. rPET-B and vPET-1 materials yielded optimal spinnability and demonstrated to be the most suitable materials to fabricate fibres with a desirable tenacity, an outstanding elongation at break and an excellent fibre fineness. Crystallinity and orientation of fibres from these two materials were explored to give a potential explanation for the higher tenacity. Furthermore, performance-reliability plots were applied, and a semi-empirical equation was suggested for the first time relating the tenacity and elongation at break of fibres. This study proves the possibility to produce PET fibres from bottle-grade recycled co-polymer PET material, which have similar properties as fibres produced from fibre-grade virgin homo-polymer PET. All the specific information of the five investigated PET materials, especially rPET-B and vPET-1, can provide guidance for melt spinning process in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurudatt K, De P, Rakshit AK, Bardhan MK (2003) Spinning fibers from poly (ethylene terephthalate) bottle-grade waste. J Appl Polym Sci 90(13):3536–3545

    Article  CAS  Google Scholar 

  2. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54(4):1361–1369

    Article  CAS  Google Scholar 

  3. Dimitrov N, Krehula LK, Siročić AP, Hrnjak-Murgić Z (2013) Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab 98(5):972–979

    Article  CAS  Google Scholar 

  4. Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly (ethylene terephthalate) (PET) with di-and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72(1):50–60

    Article  CAS  Google Scholar 

  5. Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour Conserv Recycl 55(1):34–52

    Article  Google Scholar 

  6. Chilton T, Burnley S, Nesaratnam S (2010) A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET. Resour Conserv Recycl 54(12):1241–1249

    Article  Google Scholar 

  7. Zhang Y, Guo W, Zhang H, Wu C (2009) Influence of chain extension on the compatibilization and properties of recycled poly (ethylene terephthalate)/linear low density polyethylene blends. Polym Degrad Stab 94(7):1135–1141

    Article  CAS  Google Scholar 

  8. Awaja F, Pavel D (2005) Recycling of PET. Eur Polymer J 41(7):1453–1477

    Article  CAS  Google Scholar 

  9. Rajabinejad H, Khajavi R, Rashidi A, Mansouri N, Yazdanshenas ME (2009) Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int J Environ Res 3(4):663–670

    CAS  Google Scholar 

  10. Zhang H, Wen ZG (2014) The consumption and recycling collection system of PET bottles: a case study of Beijing, China. Waste Manage 34(6):987–998

    Article  Google Scholar 

  11. Amano M, Ness B (2004) PET bottle system in Sweden and Japan: an integrated analysis from a life-cycle perspective. Lund, Sweden

    Google Scholar 

  12. Qin Y, Qu M, Kaschta J, Schubert DW (2018) Comparing recycled and virgin poly (ethylene terephthalate) melt-spun fibres. Polym Testing 72:364–371

    Article  CAS  Google Scholar 

  13. Paci M, La Mantia FP (1998) Competition between degradation and chain extension during processing of reclaimed poly (ethylene terephthalate). Polym Degrad Stab 61(3):417–420

    Article  CAS  Google Scholar 

  14. Edge M, Hayes M, Mohammadian M, Allen NS, Jewitt TS, Brems K, Jones K (1991) Aspects of poly (ethylene terephthalate) degradation for archival life and environmental degradation. Polym Degrad Stab 32(2):131–153

    Article  CAS  Google Scholar 

  15. Coelho TM, Castro R, Gobbo JA Jr (2011) PET containers in Brazil: opportunities and challenges of a logistics model for post-consumer waste recycling. Resour Conserv Recycl 55(3):291–299

    Article  Google Scholar 

  16. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91(8):1850–1854

    Article  CAS  Google Scholar 

  17. Sinha V, Patel MR, Patel JV (2010) PET waste management by chemical recycling: a review. J Polym Environ 18(1):8–25

    Article  CAS  Google Scholar 

  18. Lee JH, Lim KS, Hahm WG, Kim SH (2013) Properties of recycled and virgin poly (ethylene terephthalate) blend fibers. J Appl Polym Sci 128(2):1250–1256

    Article  CAS  Google Scholar 

  19. Abbasi M, Mojtahedi MRM, Khosroshahi A (2007) Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles. J Appl Polym Sci 103(6):3972–3975

    Article  CAS  Google Scholar 

  20. Schneiderman DK, Hillmyer MA (2017) 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50(10):3733–3749

    Article  CAS  Google Scholar 

  21. Jiang Z, Guo Z, Zhang Z, Qi Y, Pu C, Wang Q, Xiao C (2019) Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Text Res J 89(7):1207–1214

    Article  CAS  Google Scholar 

  22. Sombatdee S, Amornsakchai T, Saikrasun S (2018) Effects of polylactic acid and rPET minor components on phase evolution, tensile and thermal properties of polyethylene-based composite fibers. Polym Adv Technol 29(3):1123–1137

    Article  CAS  Google Scholar 

  23. Tapia-Picazo JC, Luna-Bárcenas JG, García-Chávez A, Gonzalez-Nuñez R, Bonilla-Petriciolet A, Alvarez-Castillo A (2014) Polyester fiber production using virgin and recycled PET. Fiber Polym 15(3):547–552

    Article  CAS  Google Scholar 

  24. Zha AX (2012) Study on production process of PSF from recycled bottle PET flakes for waterproof felt. In: Advanced materials research, vol 441. Trans Tech Publications, pp 764–766

    Google Scholar 

  25. Elamri A, Lallam A, Harzallah O, Bencheikh L (2007) Mechanical characterization of melt spun fibers from recycled and virgin PET blends. J Mater Sci 42(19):8271–8278

    Article  CAS  Google Scholar 

  26. Huang L, Pan L, Inoue T (2007) Effect of solid-state shearing of poly (ethylene terephtalate) on isothermal crystallization and fiber structure formation. J Appl Polym Sci 104(2):787–791

    Article  CAS  Google Scholar 

  27. Zander N, Gillan M, Sweetser D (2016) Recycled PET nanofibers for water filtration applications. Materials 9(4):247

    Article  PubMed Central  Google Scholar 

  28. Strain IN, Wu Q, Pourrahimi AM, Hedenqvist MS, Olsson RT, Andersson RL (2015) Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J Mater Chem A 3(4):1632–1640

    Article  CAS  Google Scholar 

  29. Santos RP, Rodrigues BV, Ramires EC, Ruvolo-Filho AC, Frollini E (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crops Prod 72:69–76

    Article  CAS  Google Scholar 

  30. Vo P, Doan H, Kinashi K, Sakai W, Tsutsumi N, Huynh D (2018) Centrifugally spun recycled PET: processing and characterization. Polymers 10(6):680

    Article  PubMed Central  Google Scholar 

  31. Lim JY, Kim SY (1999) Properties of high-speed spun high molecular weight poly (ethylene terephthalate) filaments. J Appl Polym Sci 71(8):1283–1291

    Article  CAS  Google Scholar 

  32. Yoon JH, Avci H, Najafi M, Nasri L, Hudson SM, Kotek R (2017) Development of high-tenacity, high-modulus poly (ethylene terephthalate) filaments via a next generation wet-melt-spinning process. Polym Eng Sci 57(2):224–230

    Article  CAS  Google Scholar 

  33. Jabarin SA, Lofgren EA (1984) Thermal stability of polyethylene terephthalate. Polym Eng Sci 24(13):1056–1063

    Article  Google Scholar 

  34. Härth M, Kaschta J, Schubert DW (2015) Rheological study of the reaction kinetics in a poly (ethylene terephthalate) melt. Polym Degrad Stab 120:70–75

    Article  Google Scholar 

  35. La Mantia FP, Vinci M (1994) Recycling poly (ethyleneterephthalate). Polym Degrad Stab 45(1):121–125

    Article  Google Scholar 

  36. Seo KS, Cloyd JD (1991) Kinetics of hydrolysis and thermal degradation of polyester melts. J Appl Polym Sci 42(3):845–850

    Article  CAS  Google Scholar 

  37. Darby R, Darby R, Chhabra RP (2001) Chemical engineering fluid mechanics, revised and expanded. CRC Press

    Google Scholar 

  38. Qu M, Nilsson F, Schubert D (2018) Effect of filler orientation on the electrical conductivity of carbon Fiber/PMMA composites. Fibers 6(1):3

    Article  Google Scholar 

  39. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43(14):3873–3878

    Article  CAS  Google Scholar 

  40. Starkweather HW Jr, Zoller P, Jones GA (1983) The heat of fusion of poly (ethylene terephthalate). J Polym Sci Polym Phys Ed 21(2):295–299

    Article  CAS  Google Scholar 

  41. Cruz SA, Zanin M (2006) PET recycling: evaluation of the solid state polymerization process. J Appl Polym Sci 99(5):2117–2123

    Article  CAS  Google Scholar 

  42. Rizzarelli P, Puglisi C, Montaudo G (2004) Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stab 85(2):855–863

    Article  CAS  Google Scholar 

  43. Rodríguez-Cabello JC, Santos J, Merino JC, Pastor JM (1996) Thermally induced structural changes in low-shrinkage poly (ethylene terephthalate) fibers. J Polym Sci Part B Polym Phys 34(7):1243–1255

    Article  Google Scholar 

  44. Härth M, Kaschta J, Schubert DW (2014) Shear and elongational flow properties of long-chain branched poly (ethylene terephthalates) and correlations to their molecular structure. Macromolecules 47(13):4471–4478

    Article  Google Scholar 

  45. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622

    Article  CAS  Google Scholar 

  46. Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16(1):99–127

    Article  CAS  Google Scholar 

  47. Ferry JD (1980) Viscoelastic properties of polymers. Wiley

    Google Scholar 

  48. Liu C, Li C, Chen P, He J, Fan Q (2004) Influence of long-chain branching on linear viscoelastic flow properties and dielectric relaxation of polycarbonates. Polymer 45(8):2803–2812

    Article  CAS  Google Scholar 

  49. Wang JS, Porter RS (1995) On the viscosity-temperature behavior of polymer melts. Rheol Acta 34(5):496–503

    Article  CAS  Google Scholar 

  50. Dealy JM, Read DJ, Larson RG (2018) Structure and rheology of molten polymers: from structure to flow behavior and back again. Carl Hanser Verlag GmbH Co KG

    Google Scholar 

  51. Han CD, Jhon MS (1986) Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. J Appl Polym Sci 32(3):3809–3840

    Article  Google Scholar 

  52. Kim JK, Jung DS, Kim J (1993) Morphology and rheological behaviour of mixtures of poly (styrene-b-ethylene-co-butylene-styrene) block copolymer and poly (2, 6-dimethyl-1, 4-phenylene ether). Polymer 34(22):4613–4624

    Article  CAS  Google Scholar 

  53. Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order-disorder transition temperature of polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 23(2):561–570

    Article  CAS  Google Scholar 

  54. Jiang Z, Guo Z, Zhang Z, Qi Y, Pu C, Wang Q, Xiao C (2018) Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Text Res J 0040517518767146

    Google Scholar 

  55. Peirce FT (1926) Tensile tests for cotton yarns: “the weakest link” theorems on the strength of long and of composite specimens. J Text Inst 17:T355–T368

    Article  CAS  Google Scholar 

  56. Litchfield DW, Baird DG (2008) The role of nanoclay in the generation of poly (ethylene terephthalate) fibers with improved modulus and tenacity. Polymer 49(23):5027–5036

    Article  CAS  Google Scholar 

  57. Fouda IM, Shabana HM (1999) Contribution of interferometry and mechanical parameters in evaluating molecular orientation for drawn polyester. Polym Int 48(7):602–606

    Article  CAS  Google Scholar 

  58. Baseri S, Karimi M, Morshed M (2013) Effects of tension on mesomorphic transitions and mechanical properties of oriented poly (ethylene terephthalate) fibers under supercritical CO2 exposure. Polym Bull 70(3):953–969

    Article  CAS  Google Scholar 

  59. Schubert DW, Kaschta J, Horch RE, Walter BL, Daenicke J (2014) On the failure of silicone breast implants: new insights by mapping the mechanical properties of implant shells. Polym Int 63(2):172–178

    Article  CAS  Google Scholar 

  60. Lanyi FJ, Kunzelmann P, Schubert DW (2016) Novel chart for representation of material performance and reliability. In: Macromolecular symposia, vol 365, no 1, pp 194–202

    Article  CAS  Google Scholar 

  61. Bergman B (1984) On the estimation of the Weibull modulus. J Mater Sci Lett 3(8):689–692

    Article  CAS  Google Scholar 

  62. Chen CH, White JL, Spruiell JE, Goswami BC (1983) Dynamics, air drag, and orientation development in the spunbonding process for nonwoven fabrics. Text Res J 53(1):44–51

    Article  Google Scholar 

  63. Abele WP (1998) LurgiTM nonwoven optimization: a polymer supplier’s perspective. Polym Plast Technol Eng 37(3):351–368

    Article  CAS  Google Scholar 

  64. Jeon BS (2001) Theoretical orientation density function of spunbonded nonwoven fabric. Text Res J 71(6):509–513

    Article  CAS  Google Scholar 

  65. Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA (2013) Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci 427:336–344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk W. Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, Y., Qu, M., Kaschta, J., Allen, V., Schubert, D.W. (2020). Studies on Recycled Polyester. In: Muthu, S. (eds) Recycled Polyester. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9559-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9559-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9558-2

  • Online ISBN: 978-981-32-9559-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics