Skip to main content

Exposure Assessment of Emerging Chemicals and Novel Screening Strategies

  • Chapter
  • First Online:
Emerging Chemicals and Human Health

Abstract

Persistent organic pollutants (POPs) commonly exist in various kinds of environmental mediums and can migrant into plant food sources and bioaccumulate in the fatty tissues of human body. Traditional approach to evaluate POPs in multiple biofluids is based on targeted analytic chemistry. Recently, the development of sophisticated analytical instruments (e.g., tandem mass spectrometry, MS–MS) has provided the opportunity to quantify and identify chemical compounds to achieve good sensitivity and selectivity. In this chapter, we discuss the current assessment tools of chemical pollutants, including classic targeted approaches and novel untargeted methods. Targeted biomonitoring studies typically focused on a specific group of interest chemicals such as phthalate, bisphenol A (BPA), and polybrominated diphenyl ethers (PBDEs). Recent studies tended to use noninvasive or less-invasive bio-matrices which could be accessible in sufficient amounts for the analysis and do not pose a health risk for the donor. There does not exist an ideal matrix for universal situations, but depending on the toxicokinetic of the targeted chemical. Exposome includes a series of quantitative and repeated metrics of both endogenous and exogenous exposures that describe, holistically, environmental influences or exposure over a lifetime. At the current stage, the exposome is still in its infancy. Many technical and statistical challenges remain unsolved. Combined with data mining, via a series of statistical approaches, exposome shows great potential in identifying markers that can further lead to targeted analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 09 April 2020

    The original version of the book was published without the following Acknowledgement. Chapter no 2, Acknowledgment This work was modified from the paper published in Environmental Health Perspectives [50] and Environment International [51]. The related contents are reused with permission.

References

  1. Jones KC, De Voogt P (1999) Persistent organic pollutants (pops): state of the science[J]. Environ Pollut 100(1–3):209–221

    CAS  PubMed  Google Scholar 

  2. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology[J]. Cancer Epidemiol Biomark Prev 14(8):1847–1850

    CAS  Google Scholar 

  3. Wild CP (2012) The exposome: from concept to utility[J]. Int J Epidemiol 41(1):24–32

    PubMed  Google Scholar 

  4. Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome[J]. Toxicol Sci 137(1):1

    CAS  PubMed  Google Scholar 

  5. Jones DP (2016) Sequencing the exposome: a call to action[J]. Toxicol Rep 3:29–45

    CAS  PubMed  Google Scholar 

  6. Crinnion WJ (2010) The cdc fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assists environmental medicine physicians[J]. Altern Med Rev 15(2):101–108

    PubMed  Google Scholar 

  7. Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes[J]. Philos Trans R Soc B Biol Sci 364(1526):2097–2113

    CAS  Google Scholar 

  8. Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans[J]. Mol Nutr Food Res 51(7):899–911

    CAS  PubMed  Google Scholar 

  9. Yoshida T (2017) Analytical method for urinary metabolites as biomarkers for monitoring exposure to phthalates by gas chromatography/mass spectrometry[J]. Biomed Chromatogr 31(7):e3910

    Google Scholar 

  10. Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture[J]. Philos Trans R Soc B Biol Sci 364(1526):2063–2078

    CAS  Google Scholar 

  11. Frederiksen H, Jorgensen N, Andersson AM (2010) Correlations between phthalate metabolites in urine, serum, and seminal plasma from young danish men determined by isotope dilution liquid chromatography tandem mass spectrometry[J]. J Anal Toxicol 34(7):400–410

    CAS  PubMed  Google Scholar 

  12. Hines EP, Calatat AM, Silva MJ et al (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women[J]. Environ Health Perspect 117(1):86–92

    CAS  PubMed  Google Scholar 

  13. Koch HM, Preuss R, Angerer J (2006) Di(2-ethylhexyl)phthalate (dehp): human metabolism and internal exposure – an update and latest results[J]. Int J Androl 29(1):155–165. discussion 181-155

    CAS  PubMed  Google Scholar 

  14. Corrales J, Kristofco LA, Steele WB et al (2015) Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation[J]. Dose-Response Publ Int Hormesis Soc 13(3):1559325815598308

    Google Scholar 

  15. Chapin RE, Adams J, Boekelheide K et al (2008) Ntp-cerhr expert panel report on the reproductive and developmental toxicity of bisphenol a[J]. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395

    CAS  PubMed  Google Scholar 

  16. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement[J]. Endocr Rev 30(4):293–342

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol a, 4-t-octylphenol, and 4-nonylphenol[J]. Toxicol Lett 210(2):141–154

    CAS  PubMed  Google Scholar 

  18. Calafat AM, Longnecker MP, Koch HM et al (2015) Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology[J]. Environ Health Perspect 123(7):A166–A168

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye X, Kuklenyik Z, Needham LL et al (2005) Quantification of urinary conjugates of bisphenol a, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Anal Bioanal Chem 383(4):638–644

    CAS  PubMed  Google Scholar 

  20. Andra SS, Austin C, Yang J et al (2016) Recent advances in simultaneous analysis of bisphenol a and its conjugates in human matrices: exposure biomarker perspectives[J]. Sci Total Environ 572:770–781

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao CY, Kannan K (2012) Determination of free and conjugated forms of bisphenol a in human urine and serum by liquid chromatography-tandem mass spectrometry[J]. Environ Sci Technol 46(9):5003–5009

    CAS  PubMed  Google Scholar 

  22. Lacroix MZ, Puel S, Collet SH et al (2011) Simultaneous quantification of bisphenol a and its glucuronide metabolite (bpa-g) in plasma and urine: applicability to toxicokinetic investigations[J]. Talanta 85(4):2053–2059

    CAS  PubMed  Google Scholar 

  23. Gerona RR, Woodruff TJ, Dickenson CA et al (2013) Bisphenol-a (bpa), bpa glucuronide, and bpa sulfate in midgestation umbilical cord serum in a northern and Central California population[J]. Environ Sci Technol 47(21):12477–12485

    CAS  PubMed  Google Scholar 

  24. Arbuckle TE, Marro L, Davis K et al (2015) Exposure to free and conjugated forms of bisphenol a and triclosan among pregnant women in the mirec cohort[J]. Environ Health Perspect 123(4):277–284

    CAS  PubMed  Google Scholar 

  25. Nachman RM, Fox SD, Golden WC et al (2013) Urinary free bisphenol a and bisphenol a-glucuronide concentrations in newborns[J]. J Pediatr 162(4):870–872

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Battal D, Cok I, Unlusayin I et al (2014) Determination of urinary levels of bisphenol a in a turkish population[J]. Environ Monit Assess 186(12):8443–8452

    CAS  PubMed  Google Scholar 

  27. Provencher G, Berube R, Dumas P et al (2014) Determination of bisphenol a, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A 1348:97–104

    CAS  PubMed  Google Scholar 

  28. Gerona RR, Woodruff TJ, Dickenson CA et al (2013) Bisphenol-a (bpa), bpa glucuronide, and bpa sulfate in midgestation umbilical cord serum in a northern and Central California population[J]. Environ Sci Technol 47(21):12477–12485

    CAS  PubMed  Google Scholar 

  29. Waechter J, Thornton C, Markham D et al (2007) Factors affecting the accuracy of bisphenol a and bisphenol a-monoglucuronide estimates in mammalian tissues and urine samples[J]. Toxicol Mech Methods 17(1):13–24

    CAS  PubMed  Google Scholar 

  30. Hauck ZZ, Huang K, Li GN et al (2016) Determination of bisphenol a-glucuronide in human urine using ultrahigh-pressure liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom 30(3):400–406

    CAS  PubMed  Google Scholar 

  31. Thuresson K, Hoglund P, Hagmar L et al (2006) Apparent half-lives of hepta- to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers[J]. Environ Health Perspect 114(2):176–181

    CAS  PubMed  Google Scholar 

  32. Valters K, Li H, Alaee M et al (2005) Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit river[J]. Environ Sci Technol 39(15):5612–5619

    CAS  PubMed  Google Scholar 

  33. Keller JM, Swarthout RF, Carlson BK et al (2009) Comparison of five extraction methods for measuring pcbs, pbdes, organochlorine pesticides, and lipid content in serum[J]. Anal Bioanal Chem 393(2):747–760

    CAS  PubMed  Google Scholar 

  34. Lin Y, Feng C, Xu Q et al (2016) A validated method for rapid determination of dibenzo-p-dioxins/furans (pcdd/fs), polybrominated diphenyl ethers (pbdes) and polychlorinated biphenyls (pcbs) in human milk: focus on utility of tandem solid phase extraction (spe) cleanup[J]. Anal Bioanal Chem 408(18):4897–4906

    CAS  PubMed  Google Scholar 

  35. Liu LY, He K, Hites RA et al (2016) Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants[J]. Environ Sci Technol 50(6):3065–3073

    CAS  PubMed  Google Scholar 

  36. Ivanisevic J, Zhu ZJ, Plate L et al (2013) Toward omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism[J]. Anal Chem 85(14):6876–6884

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grigoryan H, Li H, Iavarone AT et al (2012) Cys34 adducts of reactive oxygen species in human serum albumin[J]. Chem Res Toxicol 25(8):1633–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics[J]. Proc Natl Acad Sci U S A 112(41):12549–12550

    PubMed  PubMed Central  Google Scholar 

  39. Zhou B, Xiao JF, Tuli L et al (2012) Lc-ms-based metabolomics[J]. Mol BioSyst 8(2):470–481

    CAS  PubMed  Google Scholar 

  40. Rappaport SM, Barupal DK, Wishart D et al (2014) The blood exposome and its role in discovering causes of disease[J]. Environ Health Perspect 122(8):769–774

    PubMed  PubMed Central  Google Scholar 

  41. Barr DB, Wang RY, Needham LL (2005) Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the national children’s study[J]. Environ Health Perspect 113(8):1083–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu C, Anderson LC, Morgan MS et al (1998) Salivary concentrations of atrazine reflect free atrazine plasma levels in rats[J]. J Toxicol Environ Health A 53(4):283–292

    CAS  PubMed  Google Scholar 

  43. Beane J, Vick J, Schembri F et al (2011) Characterizing the impact of smoking and lung cancer on the airway transcriptome using rna-seq[J]. Cancer Prev Res (Phila) 4(6):803–817

    CAS  Google Scholar 

  44. Athersuch TJ, Keun HC (2015) Metabolic profiling in human exposome studies[J]. Mutagenesis 30(6):755–762

    CAS  PubMed  Google Scholar 

  45. Athersuch T (2016) Metabolome analyses in exposome studies: profiling methods for a vast chemical space[J]. Arch Biochem Biophys 589:177–186

    CAS  PubMed  Google Scholar 

  46. Andra SS, Austin C, Patel D et al (2017) Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome[J]. Environ Int 100:32–61

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Manrai AK, Cui Y, Bushel PR et al (2017) Informatics and data analytics to support exposome-based discovery for public health[J]. Annu Rev Public Health 38:279–294

    PubMed  Google Scholar 

  48. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso[J]. Biostatistics 9(3):432–441

    PubMed  Google Scholar 

  49. Di Q, Rowland S, Koutrakis P et al (2017) A hybrid model for spatially and temporally resolved ozone exposures in the continental United States[J]. J Air Waste Manage Assoc 67(1):39–52

    CAS  Google Scholar 

  50. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB (2017) Biomonitoring in the era of the exposome[J]. Environ Health Perspect 125:502–510

    Google Scholar 

  51. Johns LE, Cooper GS, Galizia A, Meeker JD (2015) Exposure assessment issues in epidemiology studies of phthalates[J]. Environ Int 85:27–39

    Google Scholar 

Download references

Acknowledgment

This work was modified from the paper published in Environmental Health Perspectives [50] and Environment International [51]. The related contents are reused with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Q., Dai, H. (2019). Exposure Assessment of Emerging Chemicals and Novel Screening Strategies. In: Zhang, Y. (eds) Emerging Chemicals and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-32-9535-3_2

Download citation

Publish with us

Policies and ethics