Skip to main content

Environmental Antibiotics: Exposure Monitoring and Health Endpoints

  • Chapter
  • First Online:
Emerging Chemicals and Human Health

Abstract

Antibiotics have long been used to combat human and animal diseases and promote the growth of livestock. Due to the low metabolic rate of antibiotics, they cannot be fully absorbed by human and animal bodies. Most antibiotics are discharged into the environment in the form of active ingredients or metabolites, resulting in residues in the environmental medium. More and more attention has been paid to the environmental pollution caused by unreasonable and irregular use of antibiotics. Antibiotics in the environment could cause different degrees of toxic effects on various environmental media such as water and soil, and even induce the production of resistance genes, which will bring serious threats to human life and health. This chapter introduces the exposure of antibiotics and their effects on ecological environment and human health. Moreover, we focus on the state-of-art researches on antibiotic resistance gene and initiate several prospects of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Al:

aluminum

ANOVA:

analysis of variance

ANS:

autonomic nervous system

As:

arsenic

Ba:

Barium

BMI:

body mass index

BP:

blood pressure

Br:

bromine

Ca:

calcium

Cd:

cadmium

Cl:

chlorine

Co:

Cobalt

Cr:

chromium

Cu:

copper

DBP:

diastolic blood pressure

ED-XRF:

energy dispersive X-ray fluorescence

ET-1:

endothelin-1

Fe:

iron

GWG:

gestational weight gain

HDP:

hypertensive disorders of pregnancy

ICAM-1:

intercellular adhesion molecule 1

IL:

interleukin

IQR:

interquartile range

K:

potassium

MAP:

mean arterial pressure

Mg:

magnesium

Mn:

manganese

Mo:

molybdenum

mPEAK:

Maternal Psychological and Environmental Assessment of Kids

Na:

sodium

Ni:

nickel

P:

phosphorus

Pb:

lead

PM:

particulate matter

PTFE:

polytetrafluoroethylene

Rb:

rubidium

S:

sulfur

Sb:

antimony

SBP:

systolic blood pressure

Se:

selenium

Si:

silicon

Sn:

stannum

Sr:

strontium

Ti:

titanium

TNFa:

tumor necrosis factor alpha

V:

vanadium

VCIM-1:

vascular cell adhesion molecule 1

Zn:

zinc

References

  1. Brandt KK, Amézquita A, Backhaus T et al (2015) Ecotoxicological assessment of antibiotics: a call for improved consideration of microorganisms [J]. Environ Int 85:189–205

    CAS  PubMed  Google Scholar 

  2. Halling Sorensen B, Nielsen SN, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment: a review [J]. Chemosphere 36(2):357–394

    CAS  PubMed  Google Scholar 

  3. Puckowski A, Mioduszewska K, Lukaszewicz P et al (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review [J]. J Pharm Biomed Anal 127:232–255

    CAS  PubMed  Google Scholar 

  4. Chee Sanford JC, Mackie RI, Koike S et al (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste [J]. J Environ Qual 38(3):1086–1108

    CAS  PubMed  Google Scholar 

  5. Xu Yonggang, Yu Wantai, Ma Qiang et al (2015) The antibiotic in environment and its ecotoxicity: a review [J]. Asian J Ecotoxicol 3:11–27

    Google Scholar 

  6. Du LF, Liu WK (2012) Occurrence, fate and ecotoxicity of antibiotics in agro-ecosystems: a review [J]. Agron Sustain Dev 32(2):309–327

    CAS  Google Scholar 

  7. Wellington EMH, Boxall ABA, Cross P et al (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria [J]. Lancet Infect Dis 13(2):155–165

    CAS  PubMed  Google Scholar 

  8. Martínez Carballo E, González Barreiro C, Scharf S et al (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environ Pollut 148(2):570–579

    PubMed  Google Scholar 

  9. Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario [J]. Environ Int 94:736–757

    PubMed  Google Scholar 

  10. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere 65(5):725–759

    CAS  PubMed  Google Scholar 

  11. Kümmerer K (2009) Antibiotics in the aquatic environment: a review [J]. Chemosphere 75(4):417–434

    PubMed  Google Scholar 

  12. Lee YJ, Lee SE, Lee DS et al (2008) Risk assessment of human antibiotics in Korean aquatic environment [J]. Environ Toxicol Pharmacol 26(2):216–221

    CAS  PubMed  Google Scholar 

  13. Zounkova R, Kliemesova Z, Nepejchalova L et al (2011) Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture [J]. Environ Toxicol Chem 30(5):1184–1189

    CAS  PubMed  Google Scholar 

  14. Zhang zhenghai. Three major changes of antibiotics in China in the past 10 years, with the output and export volume ranking first in the world [N]. Pharm News. 2010-02-02

    Google Scholar 

  15. Bruce JR, Paul KSL, Michael M (2005) Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China [J]. Mar Pollut Bull 50:913–920

    Google Scholar 

  16. Yu jie, hong tao. The glory and hardship in the era of antibiotics [N]. China Educ Daily. 2003-09-12

    Google Scholar 

  17. People’s Daily online. The misuse of antibiotics may cause the virus mutation [R/OL]. [2003-06-15]. http://www.people.com.cn/GB/paper1787/9423/872497.html. Accessed 5 May 2019

  18. Wu X, Wei Y, Zheng J et al (2011) The behavior of tetracycline and their degradation products during swine manure composting [J]. Bioresour Technol 102(10):5924–5931

    CAS  PubMed  Google Scholar 

  19. Ye BX, Zhang L (2015) Analysis of the pollution status and health risk of antibiotics in water environment and drinking water [J]. Int J Environ Res Public Health 32(2):173–178

    Google Scholar 

  20. Chen T (2010) Research on a variety of antibiotics of wastewater treatment plants in Guangzhou and Zhuhai by HPLC/LC-MS analysis method [D]. Jinan University, Guangzhou

    Google Scholar 

  21. Sacher F, Lange FT, Brauch H (2001) Pharmaceuticals in groundwater: analytical methods and result of a monitoring program in Baden Wurttemberg, Germany [J]. J Chromatogr A 938(1):199–210

    CAS  PubMed  Google Scholar 

  22. Tong L, Li P, Wang YX et al (2009) Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPELC/MS/MS [J]. Chemosphere 74(8):1090–1097

    CAS  PubMed  Google Scholar 

  23. Sun GD, Su ZY, Chen M et al (2009) Simultaneous determination of tetracycline and quinolone antibiotics in environmental water samples using solid phase extraction-ultra pressure liquid chromatography coupled with tandem mass spectrometry [J]. Chin J Chromatogr 27(4):54–58

    CAS  Google Scholar 

  24. Golet EM, Alder AC, Hartmann A et al (2001) Trace determination of fluoroquinolone antibacterial agents in solid-phase extraction urban wastewater by and liquid chromatography with fluorescence detection [J]. Anal Chem 73(15):3632–3638

    CAS  PubMed  Google Scholar 

  25. Ma Y, Chen ZZ, Zeng ZL (2007) Effects of enoxacin on soil microbial community functional diversity [J]. Acta Ecol Sin 27(8):3400–3406

    CAS  Google Scholar 

  26. Zhang JQ, Dong YH, An Q et al (2005) Behavior of veterinary antibiotics in soil environment [J]. Soil 37(4):353–361

    CAS  Google Scholar 

  27. Aust MO, Godlinski F, Travis GR et al (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after sub therapeutic use in cattle [J]. Environ Pollut 156(3):1243–1251

    CAS  PubMed  Google Scholar 

  28. Zhou QX, Luo Y, Wang ME (2007) Environmental residues, ecotoxicity and resistance gene contamination of antibiotics [J]. J Ecotoxicol 2(3):243–251

    CAS  Google Scholar 

  29. Tai Yiping (2010) Study on the characteristics of typical antibiotic contamination in soil of vegetable bases in the Pearl River delta region [D]. Jinan university, Guangzhou

    Google Scholar 

  30. Wu Xiaolian (2011) Contamination characteristics and health risks of quinolones antibiotics in vegetables in the Pearl River delta region [D]. Jinan University, Guangzhou

    Google Scholar 

  31. Lillenberg M, Litvin SV, Nei L et al (2010) Enrofloxacin and ciprofloxacin uptake by plants from soil [J]. Agron Res 8(1):807–814

    Google Scholar 

  32. Richardson BJ, Lam PKS, Martin M (2005) Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to southern China [J]. Mar Pollut Bull 50:913–920

    CAS  PubMed  Google Scholar 

  33. Yu Daojin, Zeng Zhenling, Chen Jaoshi (2005) Effects of oxytetracycline residues on the resistance of sediment bacteria [C]. In: Proceedings of the fourth national conference of the Chinese society of toxicology. Chinese Society of Toxicology, Shenyang, p 1

    Google Scholar 

  34. Wang Penghua, Yuan tao, Tan youming (2008) Effects of drug pollution on aquatic organisms and human health [J]. J Environ Health 25(2):172–174

    Google Scholar 

  35. Gbel A, Thomsen A, McArdell CS et al (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment [J]. Environ Sci Technol 39(11):3981–3989

    Google Scholar 

  36. Jiang L, Lin Z, Hu X et al (2010) Toxicity prediction of antibiotics on luminescent bacteria, Photobacterium phosphoreum, based on their quantitative structure-activity relationship models [J]. Bull Environ Contam Toxicol 85(6):550–555

    CAS  PubMed  Google Scholar 

  37. Hammesfahr U, Heuer H, Manzke B et al (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils [J]. Soil Biol Biochem 40(7):1583–1591

    CAS  Google Scholar 

  38. Liu Yan, Zhang Zhenhua, Bao Wangbo et al (2016) Effect of penicillin on soil microbial community structure [J]. J Ecol Rural Environ 2:309–314

    Google Scholar 

  39. Van Dijck P, vande Voorde H (1976) Sensitivity of environmental microorganisms to antimicrobial agents [J]. Appl Environ Microbiol 31(3):332–336

    PubMed  PubMed Central  Google Scholar 

  40. Migliore L, Civitareale C, Cozzolino S et al (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants [J]. Chemosphere 37(14/15):2957–2961

    CAS  Google Scholar 

  41. Kumar K, Gupta SC, Baidoo SK et al (2005) Antibiotic uptake by plants from soil fertilized with animal manure [J]. J Environ Qual 34(6):2082–2085

    CAS  PubMed  Google Scholar 

  42. Bao Chenyan, Gu Guoping, Zhang Mingkui (2016) Effect of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC [J]. Chin J Soil Sci 1:164–172

    Google Scholar 

  43. Kong Wei Dong, Zhu Yong Guan (2007) A review on ecotoxicology of veterinary pharmaceuticals to plants and soil microbes [J]. Asian J Ecotoxicol 1:1–9

    Google Scholar 

  44. Kong WD, Zhu YG, Liang YC et al (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa [J]. Environ Pollut 147(1):187–193

    CAS  PubMed  Google Scholar 

  45. Zhang Jixu, Shen Guoming, Kong Fanyu et al (2017) Effect of tetracyline on the growth and photosynthesis of flue-cured tobacco [J]. J Agro Environ Sci 1:48–56

    Google Scholar 

  46. Dong L, Gao J, Xie X et al (2012) DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida [J]. Chemosphere 89(1):44–51

    CAS  PubMed  Google Scholar 

  47. Gao M, Lyu M, Han M et al (2016) Avoidance behavior of Eisenia fetida in oxytetracycline and heavy metal-contaminated soils [J]. Environ Toxicol Pharmacol 47:119–123

    CAS  PubMed  Google Scholar 

  48. Pruden APRT, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado [J]. Environ Sci Technol 40:7445–7450

    CAS  PubMed  Google Scholar 

  49. Henriques IS, Fonseca F, Alves A et al (2006) Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters [J]. Res Microbiol 157(10):938–947

    CAS  PubMed  Google Scholar 

  50. Hsu JT, Chen CY, Young CW et al (2014) Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan [J]. J Hazard Mater 277:34–43

    CAS  PubMed  Google Scholar 

  51. Zhang Lanhe, Wang jiajia, Ha xuejiao et al (2016) Distribution characteristics of antibiotic resistance genes in vegetable field soil in Beijing [J]. Environ Sci 11:4395–4401

    Google Scholar 

  52. Cizmas L, Sharma VK, Gray CM et al (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity and risk [J]. Environ Chem Lett 13(4):381–394

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen qiuying, Jin caixia, Lu shanhua et al (2008) Research progress on veterinary drug residues and their impact on ecological environment [J]. Anhui Agric Sci 36(16):6943–6952

    Google Scholar 

  54. Lu mei, Gao xiang, Li Shuwen (2008) Determination of tetracycline antibiotic residues in aquatic products by high performance liquid chromatography [J]. Environ Monit Manage Technol 20(5):38–39

    Google Scholar 

  55. Kümmerer K (2009) Antibiotics in the aquatic environment. A review part I [J]. Chemosphere 75(4):417–434

    PubMed  Google Scholar 

  56. General office of the ministry of health. Notice about on the management of clinical application of antibacterial drugs [EB/OL]. http://www.moh.gov.cn/mohbgt/s9508/200903/39723. Accessed 5 May 2019

  57. Benbrook CM (2002) Antibiotic drug use in U.S. aquaculture [EB/OL]. http://www.iatp.org/library/antibiotics. Accessed 5 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirong Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y., Xiao, X. (2019). Environmental Antibiotics: Exposure Monitoring and Health Endpoints. In: Zhang, Y. (eds) Emerging Chemicals and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-32-9535-3_10

Download citation

Publish with us

Policies and ethics