Skip to main content

Locality Preserving Projection of Functional Connectivity for Regression

  • Chapter
  • First Online:
Pattern Analysis of the Human Connectome
  • 327 Accesses

Abstract

In this chapter, we proposed a pattern regression framework to predict individuals brain ages from the whole-brain resting-state functional connectivity MRI (rs-fcMRI). In the framework, a supervised locality preserving projections (LPP) algorithm was employed to learn a low-dimensional representation of brain development from many individuals at different ages, and locally adjusted support vector regression (LASVR) method was developed in the manifold coordinate space for making continuously valued predictions about the functional development levels of individual brains. We aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system, while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brain functional development levels. This study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fair, D.A., Cohen, A.L., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Barch, D. M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: The maturing architecture of the brains default network. Proc. Natl. Acad. Sci. U. S. A. 105, 4028–4032 (2008). https://doi.org/10.1073/pnas.0800376105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F. M., Schlaggar, B.L., Petersen, S.E.: Functional brain networks develop from a local to distributed? organization. PLoS Comput. Biol. 5, e1000381 (2009). https://doi.org/10.1371/journal.pcbi.1000381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fair, D.A., Dosenbach, N.U.F., Church, J.A., Cohen, A.L., Brahmbhatt, S., Miezin, F. M., Barch, D.M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: Development of distinct control networks through segregation and integration. Proc Natl. Acad. Sci. U. S. A. 104, 13507–13512 (2007). https://doi.org/10.1073/pnas.0705843104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kelly, A.C., Martino, A.D., Uddin, L.Q., Shehzad, Z., Gee, D.G., Reiss, P.T., Margulies, D.S., Castellanos, F.X., Milham, M.P.: Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb. Cortex 19, 640–657 (2008). https://doi.org/10.1093/cercor/bhn117

    Article  PubMed  Google Scholar 

  5. Supekar, K., Musen, M., Menon, V.: Development of large-scale functional brain networks in children. PLoS Biol. 7, e1000157 (2009). https://doi.org/10.1371/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dosenbach, N.U.F., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J. A., Nelson, S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C. N., Barnes, K. A., Dubis, J.W., Feczko, E., Coalson, R.S., Jr., J. R. P., Barch, D.M., Petersen, S.E., Schlaggar, B.L.: Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans Multimedia 10, 578–584 (2008)

    Article  Google Scholar 

  8. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17, 1178–1188 (2008)

    Article  PubMed  Google Scholar 

  9. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  10. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27, 328–340 (2005)

    Article  Google Scholar 

  11. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  12. Akaike, H.: A new look at statistical-model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  Google Scholar 

  13. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989)

    Article  Google Scholar 

  14. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Essen, D.C.V., Raichle, M. E.: The human brain is intrinsically organized into dynamic anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678 (2005). https://doi.org/10.1073/pnas.0504136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A.: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009). https://doi.org/10.1016/j.neuroimage.2008.09.036

    Article  PubMed  Google Scholar 

  16. Olson, I.R., Plotzker, A., Ezzyat, Y.: The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130, 1718–1731 (2007). https://doi.org/10.1093/brain/awm052

    Article  PubMed  Google Scholar 

  17. Sergerie, K., Chochol, C., Armony, J.L.: The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 32, 811–830 (2008). https://doi.org/10.1016/j.neubiorev.2007.12.002

    Article  PubMed  Google Scholar 

  18. Murty, V.P., Ritchey, M., Adcock, R.A., LaBara, K.S.: fMRI studies of successful emotional memory encoding: a quantitative meta-analysis. Neuropsychologia 48, 3459–3469 (2010). https://doi.org/10.1016/j.neuropsychologia.2010.07.030

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haxby, J.V., Hoffman, E.A., Gobbini, M.I.: Human neural systems for face recognition and social communication. Biol. Psychiatry 51, 59–67 (2002)

    Article  PubMed  Google Scholar 

  20. Wang, L., Su, L.F., Shen, H., Hu, D.W.: Decoding lifespan changes of the human brain using resting-state functional connectivity MRI. PLoS One 7, e44530 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ben-Hur, A., Ong, C.S., Sonnenburg, S., Scholkopf, B., Ratsch, G.: Support vector machines and kernels for computational biology. PLoS Comput. Biol. 4, e1000173 (2008). https://doi.org/10.1371/journal.pcbi.1000173.g001, https://doi.org/10.1371/journal.pcbi.1000173.g002

  22. Meunier, D., Achard, S., Morcom, A., Bullmore, E.: Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2009). https://doi.org/10.1016/j.neuroimage.2008.09.062

    Article  PubMed  Google Scholar 

  23. Wu, T., Zang, Y., Wang, L., Long, X., Hallett, M., Chen, Y., Li, K., Chan, P.: Aging influence on functional connectivity of the motor network in the resting state. Neurosci. Lett. 422, 164–168 (2007). https://doi.org/10.1016/j.neulet.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  24. Heuninckx, S., Wenderoth, N., Swinnen, S.P.: Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J. Neurosci. 28, 91–99 (2008). https://doi.org/10.1523/JNEUROSCI.3300-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mattay, V., Fera, F., Tessitore, A., Hariri, A., Das, S., Callicott, J., Weinberger, D.: Neurophysiological correlates of age-related changes in human motor function. Neurology 58, 630–635 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Ward, N.S., Frackowiak, R.S.J.: Age-related changes in the neural correlates of motor performance. Brain 126, 873–888 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J. T., Kwak, Y., Lipps, D.B.: Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34, 721–733 (2010). https://doi.org/10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  28. Jacques, P.S., Dolcos, F., Cabeza, R.: Effects of aging on functional connectivity of the amygdala during negative evaluation: a network analysis of fMRI data. Neurobiol. Aging 31, 315–327 (2010). https://doi.org/10.1016/j.neurobiolaging.2008.03.012

    Article  Google Scholar 

  29. Williams, L.M., Brown, K.J., Palmer, D., Liddell, B.J., Kemp, A.H., Olivieri, G., Peduto, A., Gordon, E.: The mellow years? Neural basis of improving emotional stability over age. J. Neurosci. 26, 6422–6430 (2006). https://doi.org/10.1523/JNEUROSCI.0022-06.2006

    CAS  PubMed  Google Scholar 

  30. Buckner, R.L., Carroll, D.C.: Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007). https://doi.org/10.1016/j.tics.2006.11.004

    Article  PubMed  Google Scholar 

  31. Fransson, P.: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain. Hum. Brain Mapp. 26, 15–29 (2005). https://doi.org/10.1002/hbm.20113

    Article  PubMed  PubMed Central  Google Scholar 

  32. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U. S. A. 100, 253–258 (2003). https://doi.org/10.1073/pnas.0135058100

    Article  CAS  PubMed  Google Scholar 

  33. Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M. E., Buckner, R.L.: Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006). https://doi.org/10.1152/jn.00048.2006

    Article  PubMed  Google Scholar 

  34. Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E.: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U. S. A. 103, 10046–10051 (2006). https://doi.org/10.1073/pnas.0604187103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M. E., Buckner, R.L.: Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–935 (2007). https://doi.org/10.1016/j.neuron.2007.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J.S., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Rombouts, S.A.R.B.: Reduced resting-state brain activity in the default network? in normal aging. Cereb. Cortex 18, 1856–1864 (2008). https://doi.org/10.1093/cercor/bhm207

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L., Li, Y., Metzak, P., He, Y., Woodward, T.S.: Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. Neuroimage 50, 862–872 (2010). https://doi.org/10.1016/j.neuroimage.2010.01.044

    Article  PubMed  Google Scholar 

  38. Singh-Manoux, A., Kivimaki, M., Glymour, M.M., Elbaz, A., Berr, C., Ebmeier, K.P., Ferrie, J.E., Dugravot, A.: Timing of onset of cognitive decline: results from whitehall II prospective cohort study. Br. Med. J. 343, d7622 (2011). https://doi.org/10.1136/bmj.d7622

    Google Scholar 

  39. Ilg, R., Wohlschager, A., Gaser, C., Liebau, Y., Dauner, R., Woller, A., Zimmer, C., Zihl, J., Muhlau, M.: Gray matter increase induced by practice correlates with task-specific activation: a combined functional and morphometric magnetic resonance imaging study. J. Neurosci. 28, 4210–4215 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L., Shen, H., Tang, F., Zang, Y., Hu, D.: Combined structural and resting-state functional MRI analysis of sexual dimorphism in the young adult human brain: an MVPA approach. Neuroimage 61, 931–940 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.080

    Article  PubMed  Google Scholar 

  41. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.A., Friston, K.J., Frackowiak, R.S.J.: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001). https://doi.org/10.1006/nimg.2001.0786

    Article  CAS  PubMed  Google Scholar 

  42. Su, L., Wang, L., Chen, F., Shen, H., Li, B., Hu, D.: Sparse representation of brain aging: extracting covariance patterns from structural MRI. PLoS One 7, e36147 (2012). https://doi.org/10.1371/journal.pone.0036147.g001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasan, K.M., Kamali, A., Abid, H., Kramer, L.A., Fletcher, J.M., Ewing-Cobbs, L.: Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct. Funct. 214, 361–373 (2010). https://doi.org/10.1007/s00429-009-0238-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hasan, K.M., Kamali, A., Iftikhar, A., Kramer, L.A., Papanicolaou, A.C., Fletcher, J.M., Ewing-Cobbs, L.: Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res. 1249, 91–100 (2009). https://doi.org/10.1016/j.brainres.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  45. Hasan, K.M., Sankar, A., Halphen, C., Kramer, L.A., Brandt, M.E., Juranek, J., Cirino, P.T., Fletcher, J.M., Papanicolaou, A.C., Ewing-Cobbs, L.: Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. NeuroReport 18, 1735–1739 (2007)

    Article  PubMed  Google Scholar 

  46. Kochunov, P., Glahn, D., Lancaster, J., Thompson, P., Kochunov, V., Rogers, B., Fox, P., Blangero, J., Williamson, D.: Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage 58, 41–49 (2011). https://doi.org/10.1016/j.neuroimage.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  47. Lebel, C., Caverhill-Godkewitsch, S., Beaulieu, C.: Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52, 20–31 (2010). https://doi.org/10.1016/j.neuroimage.2010.03.072

    Article  PubMed  Google Scholar 

  48. Westlye, L.T., Walhovd, K.B., Dale, A.M., Bjrnerud, A., Due-Tnnessen, P., Engvig, A., Grydeland, H., Tamnes, C.K., stby, Y., Fjell, A.M.: Life-span changes of the human brain white matter: diffusion tensor imaging (dti) and volumetry. Cereb. Cortex 20, 2055–2068 (2010). https://doi.org/10.1093/cercor/bhp280

    Article  Google Scholar 

  49. Sperling, R.A., LaViolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M., Pihlajamaki, M., Marshall, G., Hyman, B.T., Selkoe, D.J., Hedden, T., Buckner, R.L., Becker, J.A., Johnson, K.A.: Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009). https://doi.org/10.1016/j.neuron.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Med. Image Anal. 14, 643–653 (2010). https://doi.org/10.1016/j.media.2010.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shen, H., Wang, L., Liu, Y., Hu, D.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 49, 3110–3121 (2010). https://doi.org/10.1016/j.neuroimage.2009.11.011

    Article  PubMed  Google Scholar 

  52. Shen, X., Meyer, F.G.: Low-dimensional embedding of fMRI datasets. Neuroimage 41, 886–902 (2008). https://doi.org/10.1016/j.neuroimage.2008.02.051

    Article  PubMed  Google Scholar 

  53. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  Google Scholar 

  54. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  CAS  PubMed  Google Scholar 

  55. Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E.: Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7, e1002079 (2011). https://doi.org/10.1371/journal.pcbi.1002079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45, S199–S209 (2009). https://doi.org/10.1016/j.neuroimage.2008.11.007

    Article  PubMed  Google Scholar 

  57. Glahn, D.C., Winkler, A.M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M.A., Curran, J.C., Olvera, R.L., Laird, A.R., Smith, S.M., Beckmann, C.F., Fox, P.T., Blangerod, J.: Genetic control over the resting brain. Proc. Natl. Acad. Sci. U. S. A. 107, 1223–1228 (2010). https://doi.org/10.1073/pnas.0909969107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L., Corbetta, M.: Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. U. S. A. 106, 17558–17563 (2009). https://doi.org/10.1073/pnas.0902455106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Margulies, D.S., Kelly, A.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P.: Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37, 579–588 (2007). https://doi.org/10.1016/j.neuroimage.2007.05.019

    Article  PubMed  Google Scholar 

  60. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011). https://doi.org/10.1016/j.neuroimage.2010.08.063

    Article  PubMed  Google Scholar 

  61. Van Dijk, K.R., Sabuncu, M.R., Buckner, R.L.: The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012). https://doi.org/10.1016/j.neuroimage.2011.07.044

    Article  PubMed  Google Scholar 

  62. Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.-M., Ernst, M., Fair, D., Hampsoni, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Ktter, R., Li, S.J., Lin, C.P., Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S., McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J., Petersen, S.E., Riedl, V., Rombouts, S.A.R.B., Rypma, B., Schlaggar, B.L., Schmidt, S., Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.F., Zhang, H.Y., Castellanos, F.X., Milham, M.P.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U. S. A. 107, 4734–4739 (2010). https://doi.org/10.1073/pnas.0911855107

    Article  CAS  Google Scholar 

  63. Zuo, X.N., Kelly, C., Martino, A.D., Mennes, M., Margulies, D.S., Bangaru, S., Grzadzinski, R., Evans, A.C., Zang, Y.F., Castellanos, X., Milham, M.P.: Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J. Neurosci. 30, 15034–15043 (2010). https://doi.org/10.1523/JNEUROSCI.2612-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in alzheimers disease. PLoS Comput. Biol. 4, e1000100 (2008). https://doi.org/10.1371/journal.pcbi.1000100.t001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., Courchesne, E.: Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218–1225 (2011). https://doi.org/10.1016/j.neuron.2011.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This chapter was modified from a paper reported by our group in PLoS ONE [20].

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, D., Zeng, LL. (2019). Locality Preserving Projection of Functional Connectivity for Regression. In: Pattern Analysis of the Human Connectome. Springer, Singapore. https://doi.org/10.1007/978-981-32-9523-0_7

Download citation

Publish with us

Policies and ethics