Skip to main content

Locally Linear Embedding of Anatomical Connectivity for Classification

  • Chapter
  • First Online:
Pattern Analysis of the Human Connectome
  • 329 Accesses

Abstract

In this chapter, we aimed at investigating the alterations of the whole-brain anatomical connectivity in major depression with a machine learning approach combined local linear embedding with support vector machines. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using the machine learning approach, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified most discriminating features representing the between-group differences. Classification results showed that 91.7% (patients = 86.4%, controls = 96.2%; permutation test, pā€‰<ā€‰0.0001) of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder but also suggest that abnormal cortical-limbic anatomical network may contribute to the anatomical basis of emotion dysregulation and cognitive impairments of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drevets, W.C., Price, J.L., Furey, M.L.: Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct. 213(1ā€“2), 93ā€“118 (2008). https://doi.org/10.1007/s00429-008-0189-x. <Go to ISI>://WOS:000258653900009

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Bae, J., Macfall, J., Krishnan, K., Payne, M., Steffens, D., Taylor, W.: Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol. Psychiatry 60, 1356ā€“1363 (2006)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Drevets, W., Price, J., Bardgett, M., Reich, T., Todd, R., Raichle, M.: Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol. Biochem. Behav. 71, 431ā€“447 (2002)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Videbech, P., Ravnkilde, B., Pedersen, A., Egander, A., Landbo, B., Rasmussen, N.: The danish pet/depression project: pet findings in patients with major depression. Psychol. Med. 31, 1147ā€“1158 (2001)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Chen, C.H., Ridler, K., Suckling, J., Williams, S., Fu, C.H.Y., Merlo-Pich, E., Bullmore, E.: Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol. Psychiatry 62(5), 407ā€“414 (2007). https://doi.org/10.1016/j.biopsych.2006.09.018. <Go to ISI>://WOS:000249042800006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Drevets, W., Bogers, W., Raichle, M.: Functional anatomical correlates of antidepressant drug treatment assessed using pet measures of regional glucose metabolism. Eur. Neuropsychopharmacol. 12, 527ā€“544 (2002)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Kennedy, S., Evans, K., Kruger, S., Mayberg, H., Meyer, J., McCann, S.: Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am. J. Psychiatry 158, 899ā€“905 (2001)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Reiss, A.L., Schatzberg, A.F.: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62(5), 429ā€“437 (2007). https://doi.org/10.1016/j.biopsych.2006.09.020. <Go to ISI>://WOS:000249042800009

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Tae, W.S., Kim, S.S., Lee, K.U., Nam, E.C., Kim, K.W.: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50(7), 569ā€“581 (2008). https://doi.org/10.1007/s00234-008-0383-9. <Go to ISI>://WOS:000257216400003

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Ballmaier, M., Toga, A., Blanton, R., Sowell, E., Lavretsky, H., Peterson, J.: Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am. J. Psychiatry 161, 99ā€“108 (2004)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Tang, Y.Q., Wang, F., Xie, G.R., Liu, J., Li, L.H., Su, L.Y., Liu, Y., Hu, X., He, Z., Blumberg, H.P.: Reduced ventral anterior cingulate and amygdala volumes in medication-naive females with major depressive disorder: a voxel-based morphometric magnetic resonance imaging study. Psychiatry Res-Neuroimaging 156, 83ā€“86 (2007). https://doi.org/10.1016/j.pscychresns.2007.03.005. <Go to ISI>://WOS:000250216300009

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Hickie, I., Naismith, S., Ward, P., Scott, E., Mitchell, P., Schofield, P.: Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression. J. Affect. Disord. 98, 137ā€“142 (2007)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Mayberg, H.S.: Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9(3), 471ā€“481 (1997). <Go to ISI>://WOS:A1997XR78200013

    Google ScholarĀ 

  14. Mayberg, H.S.: Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 65, 193ā€“207 (2003). https://doi.org/10.1093/bmb/ldg65.193. <Go to ISI>://WOS:000182080300015

  15. Linden, D.E., Fallgatter, A.J.: Neuroimaging in psychiatry: from bench to bedside. Front. Hum. Neurosci. 3, 49 (2009). https://doi.org/10.3389/neuro.09.049.2009. <Go to ISI>://WOS:000274619600006

  16. Bennett, M.: The prefrontal-limbic network in depression: modulation by hypothalamus, basal ganglia and midbrain. Prog. Neurobiol. 93(4), 468ā€“487 (2011)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Zeng, L.L., Shen, H., Liu, L., Wang, L.B., Li, B.J., Fang, P., Zhou, Z.T., Li, Y.M., Hu, D.W.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 135, 1498ā€“1507 (2012). https://doi.org/10.1093/brain/aws059

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Sheline, Y.I., Price, J.L., Yan, Z.Z., Mintun, M.A.: Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U. S. A. 107(24), 11020ā€“11025 (2010). https://doi.org/10.1073/pnas.1000446107. <Go to ISI>://WOS:000278807400045

    CASĀ  Google ScholarĀ 

  19. Amelia, V., Jorge, R.C., Hassel, S.: Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch. Gen. Psychiatry 65(9), 1041ā€“1052 (2008)

    ArticleĀ  Google ScholarĀ 

  20. Nobuhara, K., Okugawa, G., Minami, T., Takase, K., Yoshida, T., Yagyu, T., Tajika, A., Sugimoto, T., Tamagaki, C., Ikeda, K., Sawada, S., Kinoshita, T.: Effects of electroconvulsive therapy on frontal white matter in late-life depression: a diffusion tensor imaging study. Neuropsychobiology 50, 48ā€“53 (2004)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Taylor, W.D., Kuchibhatla, M., Payne, M.E., Macfall, J.R., Sheline, Y.I., Krishnan, K.R., Doraiswamy, P.M.: Frontal white matter anisotropy and antidepressant remission in late-life depression. PLoS One 3, e3267 (2008)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  22. Zhang, D., Guo, L., Hu, X., Li, K., Zhao, Q., Liu, T.: Increased cortico-subcortical functional connectivity in schizophrenia. Brain Imaging Behav. 6, 27ā€“35 (2012)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Houenou, J., Wessa, M., Douaud, G., Leboyer, M., Chanraud, S., Perrin, M., Poupon, C., Martinot, J.-L., Paillere-Martinot, M.-L.: Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol. Psychiatry 12, 1001ā€“1010 (2007)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Robinson, E.C., Hammers, A., Ericsson, A., Edwards, D., Rueckert, D.: Identifying population differences in whole-brain structural networks: a machine learning approach. NeuroImage 50(3), 910ā€“919 (2010). https://doi.org/10.1016/j.neuroimage.2010.01.019. <Go to ISI>://WOS:000275408200007

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Costafreda, S.G., Chu, C., Ashburner, J., Fu, C.H.Y.: Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One 4(7), e6353 (2009)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  26. Dosenbach, N.U., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., Feczko, E., Coalson, R.S., Pruett, J.R., Barch, D.M., Petersen, S.E., Schlaggar, B.L.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358ā€“1361 (2010). https://doi.org/10.1126/science.1194144. <Go to ISI>://WOS:000281657300043

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Fan, Y., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal alzheimerā€™s disease: a high-dimensional pattern classification study. NeuroImage 41, 277ā€“285 (2008)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. Fu, C.H.Y., Mourao-Miranda, J., Costafrecla, S.G., Khanna, A., Marquand, A.F., Williams, S.C.R., Brammer, M.J.: Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol. Psychiatry 63(7), 656ā€“662 (2008). https://doi.org/10.1016/j.biopsych.2007.08.020. <Go to ISI>://WOS:000254107100004

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  29. Shen, H., Wang, L.B., Liu, Y.D., Hu, D.W.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110ā€“3121 (2010). https://doi.org/10.1016/j.neuroimage.2009.11.011. <Go to ISI>://WOS:000274064500023

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. APA.: Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press, Washington, DC (2000)

    Google ScholarĀ 

  31. First, M., Spitzer, R., Gibbon, M.: Structured Clinical Interview for DSM-IV Axis 1 Disorder-Patient Edition(SCID-I/P). New York State Psychiatric Institute, New York (1995)

    Google ScholarĀ 

  32. Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56ā€“62 (1960)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Guy, W.: Clinical global impressions: in ECDEU assessment manual for psychopharmacology. National Institute for Mental Health, Revised DHEW Pub. (ADM), Rockville (1976)

    Google ScholarĀ 

  34. Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen, B., Bannister, P., De Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J., Mathhew, P.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, 208ā€“219 (2004)

    ArticleĀ  Google ScholarĀ 

  35. Behrens, T., Johansen, B., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144ā€“155 (2007)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273ā€“289 (2002). https://doi.org/10.1006/nimg.2001.0978. <Go to ISI>://WOS:000173174900027

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143ā€“155 (2002)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825ā€“841 (2002)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Andersson, J., Jenkinson, M., Smith, S.: Non-linear registration, aka spatial normalisation, FMRIB technical report TR07JA2. www.fmrib.ox.ac.uk/analysis/techrep

  40. Behrens, T., Woolrich, M., Jenkinson, M., Johansen, B., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077ā€“1088 (2003)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Fang, P., Zeng, L.L., Shen, H., Wang, L.B., Li, B.J., Liu, L., Hu, D.: Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS One 7, e45972 (2012)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, J.M., Matthews, P.M.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750ā€“757 (2003)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z.J., He, Y., Evans, A.C.: Age- and gender-related differences in the cortical anatomical network. J. Neurosci. 29(50), 15684ā€“15693 (2009)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Behrens, T., Johansen, B., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., Thompson, A., Brady, J., Matthews, P.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750ā€“757 (2003)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Johansen-Berg, H., Behrens, T.E., Robson, M.D., Drobnjak, I., Rushworth, M.F., Brady, J.M., Smith, S.M., Higham, D.J., Matthews, P.M.: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. U. S. A. 101, 13335ā€“13340 (2004)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323ā€“2326 (2000). <Go to ISI>://WOS:000165995800050

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. Inf. Process. Med. Imaging 2732, 330ā€“341 (2003). <Go to ISI>://WOS:000185604900028

    Google ScholarĀ 

  48. Ochsner, K., Gross, J.: The cognitive control of emotion. Trends Cogn. Sci. 9, 242ā€“249 (2005)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Drevets, W.: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240ā€“259 (2001)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Frodl, T., Bokde, A.L.W., Scheuerecker, J., Lisiecka, D., Schoepf, V., Hampel, H., Moller, H.J., Wiesmann, M., Meisenzahl, E.: Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biol. Psychiatry 67(2), 161ā€“167 (2010). https://doi.org/10.1016/j.biopsych.2009.08.022. <Go to ISI>://WOS:000273201800011

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Phillips, M.L., Drevets, W.C., Rauch, S.L., Lane, R.: Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry 54, 515ā€“528 (2003)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Alexopoulos, G.S., Murphy, C.F., Gunning-Dixon, F.M., Latoussakis, V., Kanellopoulos, D., Klimstra, S., Lim, K.O., Hoptman, M.J.: Microstructural white matter abnormalities and remission of geriatric depression. Am. J. Psychiatry 165, 238ā€“244 (2008)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. Grace, A.A.: Disruption of cortical-limbic interaction as a substrate for comorbidity. Neurotox. Res. 10(2), 93ā€“101 (2006)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Samantha, J.B., Charmaine, D., Stefan, D., Suzannah, K.H., Christopher, J.J., Edmund, J.S.-B.: Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33(3), 279ā€“296 (2009)

    ArticleĀ  Google ScholarĀ 

  55. Rizzolatti, G., Fogassi, L., Gallese, V.: Parietal cortex: from sight to action. Curr. Opin. Neurobiol. 7, 562ā€“567 (1997)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Behrmann, M., Geng, J.J., Shomstein, S.: Parietal cortex and attention. Curr. Opin. Neurobiol. 14, 212ā€“217 (2004)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Paulus, M.P., Hozack, N.E., Zauscher, B.E., Frank, L., Brown, G.G., McDowell, J., Braff, D.L.: Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients. Biol. Psychiatry 51, 995ā€“1004 (2002)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  58. Mayberg, H.S., Liotti, M., Brannan, S.K., McGinnis, S., Mahurin, R.K., Jerabek, P.A., Silva, J.A., Tekell, J.L., Martin, C.C., Lancaster, J.L., Fox, P.T.: Reciprocal limbic-cortical function and negative mood: converging pet findings in depression and normal sadness. Am. J. Psychiatry 156(5), 675ā€“682 (1999)

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Seminowicz, D.A., Mayberg, H.S., McIntosh, A.R., Goldapple, K., Kennedy, S., Segal, Z., Rafi-Tari, S.: Limbic-frontal circuitry in major depression: a path modeling metanalysis. NeuroImage 22(1), 409ā€“418 (2004). https://doi.org/10.1016/j.neuroimage.2004.01.015. <Go to ISI>://WOS:000221190200043

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Price, J.L., Drevets, W.C.: Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192ā€“216 (2010)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Ebmeier, K.P., Donaghey, C., Steele, J.D.: Recent developments and current controversies in depression. Lancet 367, 153ā€“67 (2006)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Salmond, C., Menon, D., Chatfield, D., Williams, G., Pena, A., Sahakian, B., Pickarda, J.: Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. NeuroImage 29, 117ā€“124 (2006)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U. S. A. 106, 2035ā€“2040 (2009)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Catani, M., Jones, D.K., Donato, R., Ffytche, D.H.: Occipito-temporal connections in the human brain. Brain 126, 2093ā€“2107 (2003)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  65. Grill-Spector, K., Malach, R.: The human visual cortex. Annu. Rev. Neurosci. 27, 649ā€“677 (2004)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Geday, J., Ehlersf, L., Boldsen, A.S., Gjedde, A.: The inferior temporal and orbitofrontal cortex in analysing emotional pictures. NeuroImage 13(6), Supplement, 406 (2001)

    ArticleĀ  Google ScholarĀ 

  67. Masahiko, M., Atsuo, S.: Computational modeling of pair-association memory in inferior temporal cortex. Cogn. Brain. Res. 13, 169ā€“178 (2002)

    ArticleĀ  Google ScholarĀ 

  68. Krolak-Salmon, P., Hnaff, M.-A., Vighetto, A., Bertrand, O., Mauguire, F.: Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: a depth electrode ERP study in human. Neuron 42(4), 665ā€“676 (2004). http://www.sciencedirect.com/science/article/B6WSS-4CG7D53-H/2/51a79a10123a41bdd1a1d1f49858b720

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T.T., Darsaud, A., Vandewalle, G., Albouy, G., Salmon, E., Peters, F., Schmidt, C., Schabus, M., Gais, S., Degueldre, C., Phillips, C., Luxen, A., Ansseau, M., Maquet, P., Schwartz, S.: Abnormal neural filtering of irrelevant visual information in depression. J. Neurosci. 29(5), 1395ā€“1403 (2009)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Keedwell, P.A., Andrew, C., Williams, S.C., Brammer, M.J., Phillips, M.L.: A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biol. Psychiatry 58, 495ā€“503 (2005)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  71. Surguladze, S., Brammer, M.J., Keedwell, P., Giampietro, V., Young, A.W., Travis, M.J., Williams, S.C., Phillips, M.L.: A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol. Psychiatry 57(3), 201ā€“209 (2005)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  72. Savitz, J., Drevets, W.C.: Bipolar and major depressive disorder: neuroimaging the develop mental-degenerative divide. Neurosci. Biobehav. Rev. 33(5), 699ā€“771 (2009). https://doi.org/10.1016/j.neubiorev.2009.01.004. <Go to ISI>://WOS:000266305000008

    ArticleĀ  Google ScholarĀ 

  73. Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., Ernst, J., Hell, D., Boeker, H., Northoff, G.: Altered negative bold responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34, 932ā€“943 (2009)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  74. McLaughling, N., Paul, R., Grieve, S., Williams, L., Laidlaw, D., DiCarlo, M., Clark, C., Whelihan, W., Cohen, R., Whitford, T., Gordon, E.: Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan. Int. J. Dev. Neurosci. 25, 215ā€“221 (2007)

    ArticleĀ  Google ScholarĀ 

  75. Versace, A., Almeida, J.R., Quevedo, K., Thompson, W.K., Terwilliger, R.A., Hassel, S., Kupfer, D.J., Phillips, M.L.: Right orbitofrontal corticolimbic and left corticocortical white matter connectivity differentiate bipolar and unipolar depression. Biol. Psychiatry 68(6), 560ā€“567 (2010). https://doi.org/10.1016/j.biopsych.2010.04.036. <Go to ISI>://WOS:000281625500009

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., Chen, H., Deng, F., Faraco, C., Jin, C., Wee C-Y, Yuan, Y., Lv, P., Yin, Y., Hu, X., Duan, L., Hu, X., Han, J., Wang, L., Shen, D., Miller, L.S., Li, L., Liu, T.: Dicccol: dense individualized and common connectivity-based cortical landmarks. Cereb. Cortex 23(4), 786ā€“800 (2013). https://doi.org/10.1093/cercor/bhs072

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  77. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen4, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  78. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.-P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7), e597 (2007)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Iturria-Medina, Y., Canales-Rodrguez, E., Melie-Garca, L., Valds-Hernndez, P., Martnez-Montes, E., Alemn-Gmez, Y., Snchez-Bornotb, J.: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 36, 645ā€“660 (2007)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Bassett, D.S., Brown, J.A., Deshpande, V., Carlson, J.M., Grafton, S.T.: Conserved and variable architecture of human white matter connectivity. NeuroImage 54, 1262ā€“1279 (2011)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  81. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Ycel, M., Pantelis, C., Bullmore, E.T.: Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50, 970ā€“983 (2010)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  82. Gutman, D.A., Holtzheimer, P.E., Behrens, T.E., Johansen, B.H., Mayberg, H.S.: A tractography analysis of two deep brain stimulation white matter targets for depression. Biol. Psychiatry 65, 276ā€“282 (2009)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This chapter was modified from a paper reported by our group in PLoS ONE [41].

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, D., Zeng, LL. (2019). Locally Linear Embedding of Anatomical Connectivity for Classification. In: Pattern Analysis of the Human Connectome. Springer, Singapore. https://doi.org/10.1007/978-981-32-9523-0_6

Download citation

Publish with us

Policies and ethics