Skip to main content

Effect of Mechanical Constraints on Thermo-Mechanical Behaviour of Laser-Welded Dissimilar Joints

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

Titanium and its alloy exhibit eminent properties such as low density, creep and corrosion resistance, which attribute miniature applications in medical industry. Joining of dissimilar material poses challenge due to great difference in their thermal and mechanical properties. Residual stresse  is an important cogitation for the component integrity and life assessment of welded joints where its magnitude arises up to yield strength. The present study involves finite element-based modelling of dissimilar welding (Ti–SS) to examine the thermo-mechanical behaviour  of welded joints. The temperature profiles are validated with experimental data. In thermo-mechanical analysis, the mechanical constraint plays an important role which substitutes the practical welding condition. Hence, the influence of different restraint conditions on the residual stress and distortion are analysed in the present work. No significant difference is found in magnitude and trend of residual stresses for different boundary condition. However, remarkable variation is observed in distortion analysis for different conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Satoh, G., Yao, Y.L., Qiu, C.: Strength and microstructure of laser fusion-welded Ti–SS dissimilar material pair. Int. J. Adv. Manuf. Technol. 66, 469–479 (2013). https://doi.org/10.1007/s00170-012-4342-6

    Article  Google Scholar 

  2. Anawa, E.M., Olabi, A.G.: Control of welding residual stress for dissimilar laser welded materials. J. Mater. Process. Technol. 204, 22–33 (2008). https://doi.org/10.1016/j.jmatprotec.2008.03.047

    Article  Google Scholar 

  3. Dwibedi, S., Jain, N.K., Pathak, S.: Investigations on joining of stainless steel tailored blanks by µ-PTA process. Mater. Manuf. Process. 1–13 (2018). https://doi.org/10.1080/10426914.2018.1476766

    Article  Google Scholar 

  4. Vigraman, T., Ravindran, D., Narayanasamy, R.: Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L. Mater. Des. 1980–2015(36), 714–727 (2012). https://doi.org/10.1016/j.matdes.2011.12.024

    Article  Google Scholar 

  5. Tomashchuk, I., Sallamand, P., Andrzejewski, H., Grevey, D.: The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd: YAG laser joints. Intermetallics 19, 1466–1473 (2011). https://doi.org/10.1016/j.intermet.2011.05.016

    Article  Google Scholar 

  6. Casalino, G., Mortello, M., Peyre, P.: FEM analysis of fiber laser welding of titanium and aluminum. Procedia CIRP 41, 992–997 (2016). https://doi.org/10.1016/j.procir.2016.01.030

    Article  Google Scholar 

  7. Smithells, J.C.: Metals Reference Book, 5th edn. Butterworths, London (1976)

    Google Scholar 

  8. Ranjbarnodeh, E., Serajzadeh, S., Kokabi, A.H., Fischer, A.: Prediction of temperature distribution in dissimilar arc welding of stainless steel to carbon steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226, 117–125 (2012). https://doi.org/10.1177/0954405411403551

    Article  Google Scholar 

  9. Deng, D., Ogawa, K., Kiyoshima, S., et al.: Prediction of residual stresses in a dissimilar metal welded pipe with considering cladding, buttering and post weld heat treatment. Comput. Mater. Sci. 47, 398–408 (2009). https://doi.org/10.1016/j.commatsci.2009.09.001

    Article  Google Scholar 

  10. Na, M.G., Kim, J.W., Lim, D.H., Kang, Y.-J.: Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nucl. Eng. Des. 238, 1503–1510 (2008). https://doi.org/10.1016/j.nucengdes.2007.12.003

    Article  Google Scholar 

  11. Taran, Y.V., Balagurov, A.M., Sabirov, B.M., et al.: Residual stresses in a stainless steel—titanium alloy joint made with the explosive technique. J. Phys: Conf. Ser. 340, 012105 (2012). https://doi.org/10.1088/1742-6596/340/1/012105

    Article  Google Scholar 

  12. Lee, C.-H., Chang, K.-H.: Numerical analysis of residual stresses in welds of similar or dissimilar steel weldments under superimposed tensile loads. Comput. Mater. Sci. 40, 548–556 (2007). https://doi.org/10.1016/j.commatsci.2007.02.005

    Article  Google Scholar 

  13. Baruah, M., Bag, S.: Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy. Opt. Laser Technol. 90, 40–51 (2017). https://doi.org/10.1016/j.optlastec.2016.11.006

    Article  Google Scholar 

  14. Obeid, O., Alfano, G., Bahai, H., Jouhara, H.: Experimental and numerical thermo-mechanical analysis of welding in a lined pipe. J. Manuf. Process. 32, 857–872 (2018). https://doi.org/10.1016/j.jmapro.2018.04.009

    Article  Google Scholar 

  15. Yadaiah, N., Bag, S.: Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. ISIJ Int. 52, 2069–2075 (2012). https://doi.org/10.2355/isijinternational.52.2069

    Article  Google Scholar 

  16. Kohandehghan, A.R., Serajzadeh, S.: Arc welding induced residual stress in butt-joints of thin plates under constraints. J. Manuf. Process. 13, 96–103 (2011). https://doi.org/10.1016/j.jmapro.2011.01.002

    Article  Google Scholar 

  17. Baruah, M., Bag, S.: Characteristic difference of thermo-mechanical behavior in plasma microwelding of steels. Welding World 61, 857–871 (2017). https://doi.org/10.1007/s40194-017-0472-7

    Article  Google Scholar 

  18. Wang, T., Zhang, B., Feng, J.: Influences of different filler metals on electron beam welding of titanium alloy to stainless steel. Trans. Nonferrous Met. Soc. China 24, 108–114 (2014). https://doi.org/10.1016/S1003-6326(14)63034-X

    Article  Google Scholar 

  19. Kumar, B., Kebede, D., Bag, S.: Microstructure evolution in thin sheet laser welding of titanium alloy. Int. J. Mechatron. Manuf. Syst. 11, 203–229 (2018). https://doi.org/10.1504/IJMMS.2018.092875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, B., Nawani, R., Bag, S. (2020). Effect of Mechanical Constraints on Thermo-Mechanical Behaviour of Laser-Welded Dissimilar Joints. In: Shunmugam, M., Kanthababu, M. (eds) Advances in Simulation, Product Design and Development. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9487-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9487-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9486-8

  • Online ISBN: 978-981-32-9487-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics