Skip to main content

Bactericidal Nanostructured Titanium Surface Through Thermal Annealing

  • Conference paper
  • First Online:
Advances in Micro and Nano Manufacturing and Surface Engineering

Abstract

Inspired from nature, the antibacterial titanium (Ti6Al4V) alloy surface is developed through thermal annealing at 750 °C for 15 min. The titanium sample was coated with 5 nm thickness silver film using DC sputter coating and the thermal annealing was carried out in two different annealing environments (atmospheric and argon gas environment). The annealed samples were characterized through field-emission scanning electron microscope (FESEM). The formation of nanostructured topography on the annealed samples depends on the annealing environment. The polygonal-shaped surface structure is observed when annealed in atmospheric condition, and nanospikes were seen on titanium surface after annealed in an argon environment. The X-ray diffraction (XRD) analysis was carried out in order to investigate the phase formation during annealing. Plate counting method was used to study the bactericidal capability of modified titanium surfaces. The modified titanium surface in argon gas environment has shown better bactericidal property compared to surface annealed in an atmospheric environment. The physical contact killing mechanism of nanospike with the bacterial cell is dominant on the nanospike-structured titanium surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alka, J., Hesam, S., Asha, M., Prasad, K.D.V.Y.: Biomimicking nano and microstructured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15(64), 64–84 (2017). https://doi.org/10.1186/s12951-017-0306-1

  2. Australian Orthopaedic Association.: Hip, knee and shoulder arthroplasty: annual report. In: Australian Orthopedic Association National Joint Replacement Registry (2016). https://aoanjrr.sahmri.com/documents/10180/275066/Hip%2C%20Knee%20%26%20Shoulder%20

  3. Jenny, A.L., Krystyn, J.V., Michael, F.R.: Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42(22), 8573–8586 (2009). https://doi.org/10.1021/ma901356s

    Article  CAS  Google Scholar 

  4. Gianluigi, F., Annarita, F., Stefania, G., Luciana, P., Mahendra, R., Giancarlo, M., Massimiliano, G.: Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874 (2015). https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  5. Patil, D., Wasson, M.K., Aravindan, S., Perumal, V., Rao, P.V.: Fabrication of silver nanoparticles-embedded antibacterial polymer surface through thermal annealing and soft molding technique. Mater. Res. Express 6(4), 045010 (2018). https://doi.org/10.1088/2053-1591/aaf916

    Article  CAS  Google Scholar 

  6. Aaron, E., Russell, J.C., Elena, P.I.: Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J. Colloid Interface Sci. 508, 603–616 (2017). https://doi.org/10.1016/j.jcis.2017.07.021

    Article  CAS  Google Scholar 

  7. Kelleher, S.M., Habimana, O., Lawler, J., Reilly, B.O., Daniels, S., Casey, E., Cowley, A.: Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl. Mater. Interfaces 8(24), 14966–14974 (2016). https://doi.org/10.1021/acsami.5b08309

    Article  CAS  Google Scholar 

  8. Demetrescu, I., Ionita, D., Pirvu, C., Portan, D.: Present and future trends in TiO2 nanotubes elaboration, characterization and potential applications. Mol. Cryst. Liquid Cryst. 521, 195–203 (2010). https://doi.org/10.1080/15421401003715918

    Article  CAS  Google Scholar 

  9. Shenglin, M., Huaiyu, W., Wei, W., Liping, T., Haobo, P., Changshun, R., Qianli, M., Mengyuan, L., Huiling, Y., Liang, Z., Yicheng, C., Yumei, Z., Lingzhou, Z., Paul, K.C.: Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titaniananotubes. Biomaterials 35(14), 4255–4265 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.005

    Article  CAS  Google Scholar 

  10. Patil, D., Sharma, A., Aravindan, S., Rao, P.V.: Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application. Micro Nano Lett. 13, 1–5 (2018). https://doi.org/10.1049/mnl.2018.5462

    Article  CAS  Google Scholar 

  11. Huan, H., Vince, S.S., Stacey, M.G., Sungcheol, K., Minhua, L., Pablo, M., Gustavo, A.S.: Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces. Appl. Phys. Lett. 111(25), 253701, pp. 1–5 (2017). https://doi.org/10.1063/1.5003817

    Article  Google Scholar 

  12. Terje, S., Angela, H.N., Bo, S.: Bactericidal nanospike surfaces via thermal oxidation ofTi alloy substrates. Mater. Lett. 167, 2–26 (2016).https://doi.org/10.1016/j.matlet.2015.12.140

    Article  Google Scholar 

  13. Zhu, Y., Cao, H., Qiao, S., Wang, M., Gu, Y., Luo, H., Meng, F., Liu, X., Lai, H.: Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants. Int. J. Nanomed. 10, 6659–6674 (2015). https://doi.org/10.2147/IJN.S92110

    Article  CAS  Google Scholar 

  14. Xinsheng, P., Aicheng, C.: Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J. Mater. Chem. 14, 2542–2548 (2004). https://doi.org/10.1039/B404750H

    Article  Google Scholar 

  15. Alka, J., Hesam, S., Asha, M., Prasad, K.D.V.Y.: Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15, 64–84 (2017). https://doi.org/10.1186/s12951-017-030-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aravindan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patil, D., Wasson, M.K., Perumal, V., Aravindan, S., Rao, P.V. (2019). Bactericidal Nanostructured Titanium Surface Through Thermal Annealing. In: Shunmugam, M., Kanthababu, M. (eds) Advances in Micro and Nano Manufacturing and Surface Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9425-7_7

Download citation

Publish with us

Policies and ethics