Skip to main content

Abstract

Vaccines are the best prophylactic measure that have eradicated several diseases like polio, measles, and small pox. Currently, efficient vaccines are unavailable for many dreaded diseases, including tuberculosis (TB). TB is caused by an intracellular pathogen Mycobacterium tuberculosis (Mtb) and is responsible for about two million deaths and nine million new cases annually. The WHO has announced TB as a global emergency in the wake of emerging multidrug-resistant, extremely drug-resistant, and totally drug-resistant strains of Mtb. An alarming increase in the number of TB cases around the world and its co-occurrence with HIV has further complicated the problem. Additionally, BCG has failed in reducing the global TB burden, despite its widespread usage. Interestingly, BCG protects children from TB, indicating that it has sufficient antigenic repertoire to protect against Mtb. In contrast, failure to protect adults, suggests BCG inability to generate long-lasting immunological memory. Further, protection rendered by BCG against pulmonary TB in adults is highly inconsistent, varying from 0% to 85% (Andersen and Doherty, Nat Rev Microbiol 3:656–62, 2005). Furthermore, its efficacy is least in TB-endemic countries. Studies conducted in Malawi, India, and other endemic countries have concluded that BCG induces inadequate protection. The probable reasons suggested are the interference by nontuberculous mycobacteria (NTM) in antigen processing and presentation of antigen-presenting cells (APCs), latent TB infection (LTBI), and high prevalence of helminth infestation. There are currently 12 vaccine candidates in clinical trials, including recombinant BCG vaccines, attenuated Mtb strains, recombinant viral-vectored platforms, protein/adjuvant combinations, and mycobacterial extracts (WHO, Global tuberculosis report, 2017). However, the whole-cell vaccine candidates may encounter same problem in TB-endemic population, as mentioned above for BCG. Therefore, radically novel strategies of vaccination against Mtb are urgently needed. Peptide vaccines can be a possible alternative to overcome the failures of BCG because it comprises of epitopes that can directly bind to MHC molecules, circumventing the interference of NTM and latent Mtb in antigen processing. Furthermore, epitopes from multiple stages like LTBI, active, chronic, and drug-resistant Mtb can be selected. In essence, peptide-based prophylactic and therapeutic vaccines represent a promising future strategy for efficient management of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen-presenting cells

DCs:

Dendritic cells

DIM:

Phthiocerol dimycocerosates

Hly:

Listeriolysin

LTBI:

Latent TB infection

Mtb :

Mycobacterium tuberculosis

NTM:

Nontuberculous mycobacteria

PBMCs:

Peripheral blood mononuclear cells

pfo:

Perfringolysin

SNP:

Single nucleotide polymorphisms

TB:

Tuberculosis

Tregs:

T regulatory cells

WHO:

World Health Organization

References

  • Abdallah AM, Hill-Cawthorne GA, Otto TD, Coll F, Guerra-Assunção JA, Gao G, Naeem R, Ansari H, Malas TB, Adroub SA, Verboom T (2015) Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations. Sci Rep 5:15443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrewala JN, Deacock S, Jurcevic S, Wilkinson R (1999) Peptide recognition by T-cell clones of an HLA-DRB11501/0901 heterozygous donor is promiscuous only between parental alleles. Hum Immunol 55:34–38

    Article  Google Scholar 

  • Aguilo N, Toledo AM, Lopez-Roman EM, Perez-Herran E, Gormley E, Rullas-Trincado J, Angulo-Barturen I, Martin C (2014) Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol 21:594–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aichinger MC, Ginzler M, Weghuber J, Zimmermann L, Riedl K, Schütz G, Nagy E, Von Gabain A, Schweyen R, Henics T (2011) Adjuvating the adjuvant: facilitated delivery of an immunomodulatory oligonucleotide to TLR9 by a cationic antimicrobial peptide in dendritic cells. Vaccine 29:426–436

    Article  CAS  PubMed  Google Scholar 

  • Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Doherty TM (2005) The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3:656–662

    Article  CAS  PubMed  Google Scholar 

  • Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga S, Puentes E, Fernandez C, Parra A, Cardona PJ, Vilaplana C, Ausina V (2013) Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31:4867–4873

    Article  CAS  PubMed  Google Scholar 

  • Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER, Harrison LH (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study. JAMA 291:2086–2091

    Article  CAS  PubMed  Google Scholar 

  • Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang AT, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A (2014) Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 151:84–99

    Article  CAS  PubMed  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, Coler RN (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2:53ra74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biering-Sørensen S, Jensen KJ, Aamand SH, Blok B, Andersen A, Monteiro I, Netea MG, Aaby P, Benn CS, Hasløv KR (2015) Variation of growth in the production of the BCG vaccine and the association with the immune response. An observational study within a randomised trial. Vaccine 33:2056–2065

    Article  PubMed  CAS  Google Scholar 

  • Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC, Ngwira B, Sichali L, Nazareth B, Blackwell JM, Branson K (2002) BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 359:1393–1401

    Article  PubMed  Google Scholar 

  • Bouneaud C, Garcia Z, Kourilsky P, Pannetier C (2005) Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J Exp Med 201:579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T, Cole ST (2000) Comparative genomics of the mycobacteria. Int J Med Microbiol 290:143–152

    Article  CAS  PubMed  Google Scholar 

  • Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, Inwald JK (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci 104:5596–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18:679–685

    Article  CAS  PubMed  Google Scholar 

  • Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  CAS  PubMed  Google Scholar 

  • Cardona PJ, Amat I (2006) Origin and development of RUTI, a new therapeutic vaccine against Mycobacterium tuberculosis infection. Archivos de Bronconeumología (English Edition) 42:25–32

    Article  CAS  Google Scholar 

  • Cardona PJ, Amat I, Gordillo S, Arcos V, Guirado E, Díaz J, Vilaplana C, Tapia G, Ausina V (2005) Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine 23:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Carvalho EM, Da Fonseca Porto A (2004) Epidemiological and clinical interaction between HTLV-1 and Strongyloides stercoralis. Parasite Immunol 26:487–497

    Article  CAS  PubMed  Google Scholar 

  • Chattergoon MA, Kim JJ, Yang JS, Robinson TM, Lee DJ, Dentchev T, Wilson DM, Ayyavoo V, Weiner DB (2000) Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 18:974–979

    Article  CAS  PubMed  Google Scholar 

  • Chiang CY, Riley LW (2005) Exogenous reinfection in tuberculosis. Lancet Infect Dis 5:629–636

    Article  PubMed  Google Scholar 

  • Churchyard GJ, Snowden MA, Hokey D, Dheenadhayalan V, McClain JB, Douoguih M, Pau MG, Sadoff J, Landry B (2015) The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm. Vaccine 33:1890–1896

    Article  CAS  PubMed  Google Scholar 

  • Clive KS, Tyler JA, Clifton GT, Holmes JP, Ponniah S, Peoples GE, Mittendorf EA (2012) The GP2 peptide: a HER2/neu-based breast cancer vaccine. J Surg Oncol 105:452–458

    Article  CAS  PubMed  Google Scholar 

  • Counoupas C, Pinto R, Nagalingam G, Hill-Cawthorne GA, Feng CG, Britton WJ, Triccas JA (2016) Mycobacterium tuberculosis components expressed during chronic infection of the lung contribute to long-term control of pulmonary tuberculosis in mice. NPJ Vaccines 1:16012

    Article  PubMed  PubMed Central  Google Scholar 

  • Dark WD (1978) A ‘denturist’ is born. Dent Manage 18:57–61

    CAS  PubMed  Google Scholar 

  • Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S, Blanchard JL, Didier PJ, Roy CJ, Rao SS, Hokey DA (2014) Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol 193:1799–1811

    Article  CAS  PubMed  Google Scholar 

  • Datta M, Vallishayee SR, Diwakara SA (1999) Fifteen year follow up of trial of BCG vaccines in South India for tuberculosis prevention. Indian J Med Res 110:56–69

    Google Scholar 

  • de Koning HD, Simon A, Zeeuwen PL, Schalkwijk J (2012) Pattern recognition receptors in infectious skin diseases. Microbes Infect 14:881–893

    Google Scholar 

  • Deng YH, He HY, Zhang BS (2014) Evaluation of protective efficacy conferred by a recombinant Mycobacterium bovis BCG expressing a fusion protein of Ag85A-ESAT-6. J Microbiol Immunol Infect 47:48–56

    Article  CAS  PubMed  Google Scholar 

  • Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SH (2011) Recombinant BCG Δ ure C hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey B, Jain R, Khera A, Rao V, Dhar N, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK (2009) Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine 28:63–70

    Article  PubMed  CAS  Google Scholar 

  • Dieye TN, NDiaye BP, Dieng AB, Fall M, Britain N, Vermaak S, Camara M, Diop-Ndiaye H, Ngom-Gueye NF, Diaw PA, Toure-Kane C (2013) Two doses of candidate TB vaccine MVA85A in antiretroviral therapy (ART) naive subjects gives comparable immunogenicity to one dose in ART+ subjects. PLoS One 8:e67177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dockrell HM, Smith SG (2017) What have we learnt about BCG vaccination in the last 20 years? Front Immunol 8:1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Zein M, Conus F, Benedetti A, Menzies D, Parent ME, Rousseau MC (2017) Association between Bacillus Calmette-Guerin vaccination and childhood asthma in the Quebec birth cohort on immunity and health. Am J Epidemiol 186:344–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias D, Britton S, Kassu A, Akuffo H (2007) Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Rev Anti-Infect Ther 5:475–484

    Article  PubMed  Google Scholar 

  • Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26:3897–3902

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Chen WD, Wang YD (2018) Gut microbiota: an integral moderator in health and disease. Front Microbiol 9:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Fine PE, Floyd S, Stanford JL, Nkhosa P, Kasunga A, Chaguluka S, Warndorff DK, Jenkins PA, Yates M, Ponnighaus JM (2001) Environmental mycobacteria in northern Malawi: implications for the epidemiology of tuberculosis and leprosy. Epidemiol Infect 126:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaherty DK, Vesosky B, Beamer GL, Stromberg P, Turner J (2006) Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. J Leukoc Biol 80:1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Flynn JL, Goldstein MM, Triebold KJ, Koller BB, Bloom BR (1992) Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci 89:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  CAS  PubMed  Google Scholar 

  • Fuge O, Vasdev N, Allchorne P, Green JS (2015) Immunotherapy for bladder cancer. Res Rep Urol 7:65–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillard P, Yang PC, Danilovits M, Su WJ, Cheng SL, Pehme L, Bollaerts A, Jongert E, Moris P, Ofori-Anyinam O, Demoitié MA (2016) Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: a phase II randomised study. Tuberculosis 100:118–127

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernández-Pando R, Thole J, Behr M, Gicquel B, Martín C (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3:e3496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN (2012) Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 18:607–614

    Article  CAS  PubMed  Google Scholar 

  • Grode L, Ganoza CA, Brohm C, Weiner J 3rd, Eisele B, Kaufmann SH (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31:1340–1348

    Article  CAS  PubMed  Google Scholar 

  • Guirado E, Gil O, Cáceres N, Singh M, Vilaplana C, Cardona PJ (2008) Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and Guinea pig experimental models of tuberculosis. Clin Vaccine Immunol 15:1229–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Ahmad FJ, Ahmad F, Gupta UD, Natarajan M, Katoch VM, Bhaskar S (2012) Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine 30:6198–6209

    Article  CAS  PubMed  Google Scholar 

  • Hatano S, Tamura T, Umemura M, Matsuzaki G, Ohara N, Yoshikai Y (2016) Recombinant Mycobacterium bovis bacillus Calmette-Guerin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate gammadelta T cells. Vaccine 34:2490–2495

    Article  CAS  PubMed  Google Scholar 

  • Henao-Tamayo MI, Ordway DJ, Irwin SM, Shang S, Shanley C, Orme IM (2010) Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol 17:618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho P, Wei X, Seah GT (2010) Regulatory T cells induced by Mycobacterium chelonae sensitization influence murine responses to bacille Calmette-Guerin. J Leukoc Biol 88:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH, Weichold F, Geiter L, Sadoff JC, Horwitz MA (2008) A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 198:1491–1501

    Article  PubMed  Google Scholar 

  • Horwitz MA, Harth G, Dillon BJ, Masleša-Galić S (2000) Recombinant Bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci 97:13853–13858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idoko OT, Owolabi OA, Owiafe PK, Moris P, Odutola A, Bollaerts A, Ogundare E, Jongert E, Demoitié MA, Ofori-Anyinam O, Ota MO (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis 94:564–578

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK (2008) Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung. PLoS One 3:e3869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kagina BM, Tameris MD, Geldenhuys H, Hatherill M, Abel B, Hussey GD, Scriba TJ, Mahomed H, Sadoff JC, Hanekom WA, Mansoor N (2014) The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine 32:5908–5917

    Article  CAS  PubMed  Google Scholar 

  • Khader SA, Cooper AM (2008) IL-23 and IL-17 in tuberculosis. Cytokine 41:79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN (2016) Alteration in the gut microbiota provokes susceptibility to tuberculosis. Front Immunol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Kong CU, Ng LG, Nambiar JK, Spratt JM, Weninger W, Triccas JA (2011) Targeted induction of antigen expression within dendritic cells modulates antigen-specific immunity afforded by recombinant BCG. Vaccine 29:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagranderie M, Guyonvarc’h PM (2014) The interplay between bacillus Calmette-Guerin and Treg cells and its role to prevent or cure inflammatory diseases. Expert Rev Clin Immunol 10:741–745

    Article  CAS  PubMed  Google Scholar 

  • Lahey T, Laddy D, Hill K, Schaeffer J, Hogg A, Keeble J, Dagg B, Ho MM, Arbeit RD, von Reyn CF (2016) Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One 11:e0168521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Qiao D, Zhang X, Liu Z, Wu C (2011) The immune responses of central and effector memory BCG-specific CD4+ T cells in BCG-vaccinated PPD+ donors were modulated by Treg cells. Immunobiology 216:477–484

    Article  CAS  PubMed  Google Scholar 

  • Li W, Joshi M, Singhania S, Ramsey K, Murthy A (2014) Peptide vaccine: progress and challenges. Vaccine 2:515–536

    Article  CAS  Google Scholar 

  • Lin PL, Dietrich J, Tan E, Abalos RM, Burgos J, Bigbee C, Bigbee M, Milk L, Gideon HP, Rodgers M, Cochran C, Guinn KM, Sherman DR, Klein E, Janssen C, Flynn JL, Andersen P (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122:303–314

    Article  CAS  Google Scholar 

  • Lozes E, Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Vandenbussche P, Van Vooren JP, Drowart A, Ulmer JB, Liu MA (1997) Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15:830–833

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xu Y, Yang E, Wang C, Wang H, Shen H (2012) Novel recombinant BCG coexpressing Ag85B, ESAT-6 and Rv2608 elicits significantly enhanced cellular immune and antibody responses in C57BL/6 mice. Scand J Immunol 76:271–277

    Article  CAS  PubMed  Google Scholar 

  • Luabeya AK, Kagina BM, Tameris MD, Geldenhuys H, Hoff ST, Shi Z, Kromann I, Hatherill M, Mahomed H, Hanekom WA, Andersen P (2015) First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 33:4130–4140

    Article  CAS  PubMed  Google Scholar 

  • Luca S, Mihaescu T (2013) History of BCG vaccine. Maedica (Buchar) 8:53–58

    Google Scholar 

  • McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV (2005) Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis 85:47–52

    Article  CAS  PubMed  Google Scholar 

  • Murray RA, Mansoor N, Harbacheuski R, Soler J, Davids V, Soares A, Hawkridge A, Hussey GD, Maecker H, Kaplan G, Hanekom WA (2006) Bacillus Calmette Guerin vaccination of human newborns induces a specific, functional CD8+ T cell response. J Immunol 177:5647–5651

    Article  CAS  PubMed  Google Scholar 

  • Nanjappa SG, Walent JH, Morre M, Suresh M (2008) Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J Clin Invest 118:1027–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nell AS, D’lom E, Bouic P, Sabaté M, Bosser R, Picas J, Amat M, Churchyard G, Cardona PJ (2014) Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One 9:e89612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguipdop-Djomo P, Heldal E, Rodrigues LC, Abubakar I, Mangtani P (2016) Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study. Lancet Infect Dis 16:219–226

    Article  PubMed  Google Scholar 

  • Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SH (2017) The recombinant Bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orege PA, Fine PE, Lucas SB, Obura M, Okelo C, Okuku P (1993) Case-control study of BCG vaccination as a risk factor for leprosy and tuberculosis in western Kenya. Int J Lepr Other Mycobact Dis 61:542–549

    CAS  PubMed  Google Scholar 

  • Orr MT, Duthie MS, Windish HP, Lucas EA, Guderian JA, Hudson TE, Shaverdian N, O’Donnell J, Desbien AL, Reed SG, Coler RN (2013) MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 43:2398–2408

    Article  CAS  PubMed  Google Scholar 

  • Osborn TW (1983) Changes in BCG strains. Tubercle 64:1–13

    Article  CAS  PubMed  Google Scholar 

  • Palmer CE, Long MW (1966) Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am Rev Respir Dis 94:553–568

    CAS  PubMed  Google Scholar 

  • Plotkin S (2014) History of vaccination. Proc Natl Acad Sci 111:12283–12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin SA, Plotkin SL (2011) The development of vaccines: how the past led to the future. Nat Rev Microbiol 9:889–893

    Article  CAS  PubMed  Google Scholar 

  • Portnoy DA, Tweten RK, Kehoe M, Bielecki J (1992) Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 60:2710–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power CA, Wei G, Bretscher PA (1998) Mycobacterial dose defines the Th1/Th2 nature of the immune response independently of whether immunization is administered by the intravenous, subcutaneous, or intradermal route. Infect Immun 66:5743–5750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole S (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    Article  CAS  PubMed  Google Scholar 

  • Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, Xu Y, Zhang XL, Wang HH (2009) More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64190–198 and Mtb8. 4. Scand J Immunol 69:342–350

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Magalhaes I, Rahman J, Ahmed RK, Sizemore DR, Scanga CA, Weichold F, Verreck F, Kondova I, Sadoff J, Thorstensson R (2012) Prime-boost vaccination with rBCG/rAd35 enhances CD8+ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates. Mol Med 18:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai PK, Chodisetti SB, Nadeem S, Maurya SK, Gowthaman U, Zeng W, Janmeja AK, Jackson DC, Agrewala JN (2016) A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host. Sci Rep 6:23917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz N, Curtis N (2009) Mapping the global use of different BCG vaccine strains. Tuberculosis 89:248–251

    Article  PubMed  Google Scholar 

  • Ritz N, Dutta B, Donath S, Casalaz D, Connell TG, Tebruegge M, Robins-Browne R, Hanekom WA, Britton WJ, Curtis N (2012) The influence of Bacille Calmette-Guerin vaccine strain on the immune response against tuberculosis: a randomized trial. Am J Respir Crit Care Med 185:213–222

    Article  CAS  PubMed  Google Scholar 

  • Rook GA, Hernandez-Pando R, Dheda K, Seah GT (2004) IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 25:483–488

    Article  CAS  PubMed  Google Scholar 

  • Sabado RL, Bhardwaj N (2010) Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2:37–56

    Article  CAS  PubMed  Google Scholar 

  • Sathyabama S, Khan N, Agrewala JN (2014) Friendly pathogens: prevent or provoke autoimmunity. Crit Rev Microbiol 40:273–280

    Article  CAS  PubMed  Google Scholar 

  • Satti I, Meyer J, Harris SA, Thomas ZR, Griffiths K, Antrobus RD, Rowland R, Ramon RL, Smith M, Sheehan S, Bettinson H (2014) Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis 14:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, Keyser A, Moyo S, Brittain N, Lawrie A, Gelderbloem S (2010) Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4:835–842

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Agrewala JN (2004) Potent role of vaccines prepared from macrophages infected with live bacteria in protection against Mycobacterium tuberculosis and Salmonella typhimurium infections. J Infect Dis 190:107–114

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Katoch K, Sarin R, Balambal R, Jain NK, Patel N, Murthy KJ, Singla N, Saha PK, Khanna A, Singh (2017) Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep 7:3354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheehan S, Harris SA, Satti I, Hokey DA, Dheenadhayalan V, Stockdale L, Thomas ZR, Minhinnick A, Wilkie M, Vermaak S, Meyer J (2015) A phase I, open-label trial, evaluating the safety and immunogenicity of candidate tuberculosis vaccines AERAS-402 and MVA85A, administered by prime-boost regime in BCG-vaccinated healthy adults. PLoS One 10:e0141687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi C, Chen L, Chen Z, Zhang Y, Zhou Z, Lu J, Fu R, Wang C, Fang Z, Fan X (2010) Enhanced protection against tuberculosis by vaccination with recombinant BCG over-expressing HspX protein. Vaccine 28:5237–5244

    Article  CAS  PubMed  Google Scholar 

  • Singh CR, Moulton RA, Armitige LY, Bidani A, Snuggs M, Dhandayuthapani S, Hunter RL, Jagannath C (2006) Processing and presentation of a mycobacterial antigen 85B epitope by murine macrophages is dependent on the phagosomal acquisition of vacuolar proton ATPase and in situ activation of cathepsin D. J Immunol 177:3250–3259

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Gowthaman U, Jain S, Parihar P, Banskar S, Gupta P, Gupta UD, Agrewala JN (2010) Coadministration of interleukins 7 and 15 with bacille Calmette-Guerin mounts enduring T cell memory response against Mycobacterium tuberculosis. J Infect Dis 202:480–489

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Jain S, Gowthaman U, Parihar P, Gupta P, Gupta UD, Agrewala JN (2011) Co-administration of IL-1+IL-6+TNF-alpha with Mycobacterium tuberculosis infected macrophages vaccine induces better protective T cell memory than BCG. PLoS One 6:e16097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Saqib M, Gupta A, Kumar P, Bhaskar S (2017) Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages. PLoS One 12:e0189606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slobbe L, Lockhart E, O’Donnell M, Makintosh C, Buchan G (1999) An in vitro comparison of BCG and cytokine secreting BCG vaccines. Immunology 96:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smaill F, Xing Z (2014) Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 13:927–930

    Article  CAS  PubMed  Google Scholar 

  • Soares AP, Scriba TJ, Joseph S, Harbacheuski R, Murray RA, Gelderbloem SJ, Hawkridge A, Hussey GD, Maecker H, Kaplan G, Hanekom WA (2008) Bacillus Calmette-Guerin vaccination of human newborns induces T cells with complex cytokine and phenotypic profiles. J Immunol 180:3569–3577

    Article  CAS  PubMed  Google Scholar 

  • Solans L, Uranga S, Aguilo N, Arnal C, Gomez AB, Monzon M, Badiola JJ, Gicquel B, Martin C (2014) Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice. Vaccine 32:5192–5197

    Article  CAS  PubMed  Google Scholar 

  • Stanford J, Stanford C, Grange J (2004) Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis. Front Biosci 9:1701–1719

    Article  CAS  PubMed  Google Scholar 

  • Sterne JA, Rodrigues LC, Guedes IN (1998) Does the efficacy of BCG decline with time since vaccination? Int J Tuberc Lung Dis 2:200–207

    CAS  PubMed  Google Scholar 

  • Stylianou E, Griffiths KL, Poyntz HC, Harrington-Kandt R, Dicks MD, Stockdale L, Betts G, McShane H (2015) Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 33:6800–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara I, Udagawa T, Taniyama T (2007) Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A. Tuberculosis 87:94–101

    Article  CAS  PubMed  Google Scholar 

  • Sugawara I, Sun L, Mizuno S, Taniyama T (2009) Protective efficacy of recombinant BCG Tokyo (Ag85A) in rhesus monkeys (Macaca mulatta) infected intratracheally with H37Rv Mycobacterium tuberculosis. Tuberculosis 89:62–67

    Article  CAS  PubMed  Google Scholar 

  • Tacquet A, Gaudier B, Gernez-Rieux C (1962) Etude expérimentale de la vitalité du BCG au cours de la traversee gastro-intestinale chez des enfants non allergiques vaccinés par voie digestive. Pharmacology 6:373–381

    Article  CAS  Google Scholar 

  • Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tameris M, Geldenhuys H, Luabeya AK, Smit E, Hughes JE, Vermaak S, Hanekom WA, Hatherill M, Mahomed H, McShane H, Scriba TJ (2014) The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PLoS One 9:e87340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thacher EG, Cavassini M, Audran R, Thierry AC, Bollaerts A, Cohen J, Demoitié MA, Ejigu D, Mettens P, Moris P, Ofori-Anyinam O (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial. AIDS 28:1769–1781

    Article  CAS  PubMed  Google Scholar 

  • Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Röllinghoff M, Bölcskei PL, Wagner M, Akira S (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Tullius MV, Harth G, Masleša-Galić S, Dillon BJ, Horwitz MA (2008) A replication-limited recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 76:5200–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich HJ, Beatty WL, Russell DG (2000) Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway. J Immunol 165:6073–6080

    Article  CAS  PubMed  Google Scholar 

  • Van Panhuis WG, Grefenstette J, Jung SY, Chok NS, Cross A, Eng H, Lee BY, Zadorozhny V, Brown S, Cummings D, Burke DS (2013) Contagious diseases in the United States from 1888 to the present. N Engl J Med 369:2152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P (2000) Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 30:3689–3698

    Article  PubMed  Google Scholar 

  • Van Soelen N, Mandalakas AM, Kirchner HL, Walzl G, Grewal HM, Jacobsen M, Hesseling AC (2012) Effect of Ascaris Lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: a cross-sectional community-based study. BMC Infect Dis 12:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verreck FA, Tchilian EZ, Vervenne RA, Sombroek CC, Kondova I, Eissen OA, Sommandas V, van der Werff NM, Verschoor E, Braskamp G, Bakker J (2017) Variable BCG efficacy in rhesus populations: pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis 104:46–57

    Article  CAS  PubMed  Google Scholar 

  • Vilaplana C, Montané E, Pinto S, Barriocanal AM, Domenech G, Torres F, Cardona PJ, Costa J (2010) Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI®. Vaccine 28:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Vilaplana C, Gil O, Cáceres N, Pinto S, Díaz J, Cardona PJ (2011) Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One 6:e20404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Fu R, Chen Z, Tan K, Chen L, Teng X, Lu J, Shi C, Fan X (2012) Immunogenicity and protective efficacy of a novel recombinant BCG strain overexpressing antigens Ag85A and Ag85B. Clin Dev Immunol 2012:563838

    PubMed  PubMed Central  Google Scholar 

  • White AD, Sibley L, Dennis MJ, Gooch K, Betts G, Edwards N, Reyes-Sandoval A, Carroll MW, Williams A, Marsh PD, McShane H (2013) Evaluation of the safety and immunogenicity of a candidate tuberculosis vaccine, MVA85A, delivered by aerosol to the lungs of macaques. Clin Vaccine Immunol 20:663–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson KA, Martin TD, Reba SM, Aung H, Redline RW, Boom WH, Toossi Z, Fulton SA (2000) Latency-associated peptide of transforming growth factor beta enhances mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect Immun 68:6505–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (Ed.) (2013) Global tuberculosis report

    Google Scholar 

  • World Health Organization (Ed.) (2014) Global tuberculosis report

    Google Scholar 

  • World Health Organization (Ed.) (2017) Global tuberculosis report

    Google Scholar 

  • World Health Organization (Ed.) (2018) Global tuberculosis report

    Google Scholar 

  • Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN (2009) Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed Guinea pigs against pulmonary tuberculosis. PLoS One 4:e5856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Zhang Y, Zheng H, Pan Y, Liu H, Du P, Wan L, Liu J, Zhu B, Zhao G, Chen C (2013) Genome sequencing and analysis of BCG vaccine strains. PLoS One 8:e71243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwingenberger K, Hohmann A, de Brito MC, Ritter M (1991) Impaired balance of interleukin-4 and interferon-gamma production in infections with Schistosoma mansoni and intestinal nematodes. Scand J Immunol 34:243–251

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed N. Agrewala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G. et al. (2019). Tuberculosis Vaccine: Past Experiences and Future Prospects. In: Hasnain, S., Ehtesham, N., Grover, S. (eds) Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-32-9413-4_21

Download citation

Publish with us

Policies and ethics