Skip to main content

Quorum Sensing: Communication Complexity for Resilience of Plant-Microbe Interaction

  • Chapter
  • First Online:
  • 786 Accesses

Abstract

Microorganisms employ a precised communication pattern among themselves in order to coordinate between various processes during their growth. Both unicellular and multicellular microbes are found to show cell density-driven gene expression. This phenomenon of density-dependent cell regulation used for survival, prevalence and colonization of specific host is generally termed as quorum sensing (QS). Microorganisms respond to this stimulus once the signalling molecule reaches its threshold concentration. Since they are found to be able to regulate their own production, they are termed as autoinducers (quorum sensing molecules). These molecules function by sensing their own population with respect to their density and distribution pattern in the prevailing environment. Hence, microorganisms use such environmental sensing mechanisms to get adapted as well as for their survival in the existing conditions in their habitat, thereby maintaining healthy cell population. The autoinducers occur widespread in several microorganisms and differ from each other in their molecular structures. Acyl homoserine lactones (AHL), Autoinducer (AI), i.e., AI-2, AI-3 and quinolones are the common QS signalling molecules in Gram-negative bacteria, while cyclic peptides, AI-2 and butyrolactones are observed as signalling molecules in Gram-positive bacteria. In the case of actinomycetes, small diffusible molecules called autoregulators, A-factor and 2-iso-octanoyl-(3R)-hydroxymethyl-γ-butyrolactone act as QS signalling molecules. Understanding the connection between genomes, gene expression and the molecules in complex environment is considered to be a tough task. Increasing interest towards studying the underlying mechanisms has led to the development of various model systems. Among them, plant-microbe symbiotic system is considered to be the best one to study the inter-kingdom molecular cross-talk. During the process of evolution, plants started to respond to the external stimuli in different and more specific ways. One such way includes production of AHL-like molecules to regulate the QS of plant-associated microorganisms. In view of this, the present chapter will be focused on quorum sensing molecules and their role in plant-microbe interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad I, Aquil F, Ahmad F, Zahin M, Musarrat J (2008) Quorum sensing in bacteria: potential in plant health protection. In: Ahmad I, Hayat S, Pichtel J (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 129–153

    Chapter  Google Scholar 

  • Alqueres S, Menses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus strain PAL5. Mol Plant Microbe Interact 26:937–945

    Article  CAS  PubMed  Google Scholar 

  • Amari DT, Marques CNH, Davies DG (2013) The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J Bacteriol 195:4600–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amrutha RN, Bramhachari PV, Prakasham RS (2018) Quorum-sensing mechanism in rhizobium sp.: revealing complexity in a molecular dialogue. In: Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore, pp 249–258

    Chapter  Google Scholar 

  • Balaban N, Novick RP (1995) Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci U S A 92:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard AM, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GP (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc B Biol Sci 362:1165–1183

    Article  CAS  Google Scholar 

  • Bassler BL (2002) Small talk: cell to cell communication in bacteria. Cell 109:421–424

    CAS  PubMed  Google Scholar 

  • Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RA, Keller NP (2009) Oxygenase coordination is required for morphological transition and the host fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan KG, Puthucheary SD, Chan XY, Yin WF, Wong CS, Too WS (2011) Quorum sensing in Aeromonas species isolated from patients in Malaysia. Curr Microbiol 62:167–172

    Article  CAS  PubMed  Google Scholar 

  • Chapalain A, Vial L, Laprade N, Dekimpe V, Perreault J, Deziel E (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiol Open 2:226–242

    Article  CAS  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 103:7460–7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin-A-Woeng TFC, Van den Broek D, deVoer G, Vander Drift KMGM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact 14:969–979

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  • Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1:5–12

    CAS  PubMed  Google Scholar 

  • Ferluga S, Steindler L, Venturi V (2008) N-acyl homoserine lactone quorum sensing in Gram negative rhizobacteria. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 69–90

    Chapter  Google Scholar 

  • Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111:28–67

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Gobel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22:222–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing Rhizobacteria. Microbiol Mol Biol Rev 67:574–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J (2017) Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microb Ecol 73:616–629

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Gantner S, Schuhegger R, Steidle A, Dürr C, Schmid M (2004) N-acyl-homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant-microbe interactions, vol 4. MPMI-Press, St. Paul, pp 554–556

    Google Scholar 

  • Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin G, Liu F, Ma H, Hao S, Zhao Q, Bian Z, Jia Z, Song S (2012) Two G-protein-coupled receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochem Biophys Res Commun 417:991–995

    Article  CAS  PubMed  Google Scholar 

  • Joseph CM, Phillip DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192

    Article  CAS  Google Scholar 

  • Kang JE, Han JW, Jeon BJ, Kim BS (2016) Efficacies of quorum sensing inhibitors Piericidin A and Glucupiericidin A produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atrosptica. Microbiol Res 184:32–41

    Article  CAS  PubMed  Google Scholar 

  • Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Bimerew M, Ma Y, Müller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing system. Mol Plant Microbe Interact 25:677–683

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Agroecology and strategies for climate change. Springer, Dordrecht, pp 109–133

    Chapter  Google Scholar 

  • Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA (2001) Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69:4661–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhani HD (2011) Quorum sensing in fungi: Q&A. PLOS Pathog 7:e1002301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anoliés, G., Rolfe, B. G., Baur, W. D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proceedings of National Academy of Sciences of the United States of America, 100:1444-1449

    Article  CAS  Google Scholar 

  • Mellbye B, Schuster M (2011) More than just a quorum: integration of stress and other environmental cues in acyl-homoserine lactone signalling. In: Storz G, Hengge R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 349–363

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Morfeldt E, Taylor D, Von Gabain A, Arvidson S (1995) Activation of alpha toxin translation in staphylococcus aureus by the transcoded antisense RNA, RNA III. EMBO J 14:4569–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  CAS  PubMed  Google Scholar 

  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell A, An SQ, McCarthy Y, Schulte F, Niehaus K, He YQ, Ryan RP, Dow JL (2013) Proteomics analysis of the regulatory role of Rpf/DSF cell-to-cell signaling system in the virulence of Xanthomonas campestris. Mol Plant Microbe Interact 26:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Ortíz-Castro R, Martinez-Trujillo M, López-Bucio J (2008) N-acyl homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    Article  CAS  Google Scholar 

  • Raina S, DeVizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852

    Article  CAS  Google Scholar 

  • Rumbaugh KP (ed) (2011) Quorum sensing: methods and protocols. Methods in molecular biology. Springer, New York

    Google Scholar 

  • Ryan RP, An SQ, Allan JH (2015) The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11:e1004986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behaviour 7:178–181

    Article  CAS  Google Scholar 

  • Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus Aspergillus terreus. Appl Environ Microbiol 64:3707–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437

    Article  PubMed  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem FV, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato plants by N-acyl-homoserine lactone–producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino F, Roy I, Keshavarz T (2010) Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl Microbiol Biotechnol 88:65–73

    Article  CAS  PubMed  Google Scholar 

  • Sturme MH, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, deVos WM (2002) Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Weng LX, Zhan YQ, Wang LH (2013) BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog 64:33–38

    Article  CAS  PubMed  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Urlich RL (2004) Quorum quenching: enzymatic disruption of N-Acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 70:6173–6180

    Article  CAS  Google Scholar 

  • Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root associated fungi. FEMS Microbiol Ecol 65:271–278

    Article  CAS  PubMed  Google Scholar 

  • Von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-kopplin P, Durner J (2008) The response of Arabidopsis thaliana to N-hexanoyl- DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    Article  CAS  Google Scholar 

  • Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    Article  CAS  PubMed  Google Scholar 

  • White CE, Winans SC (2008) The cell-cell communication system of Agrobacterium tumefaciens. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 593–622

    Chapter  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Wood DW, Gong F, Daykin MM, Williams P, Pierson LS (1997) N-acyl homoserine lactone mediated regulation of phenazine gene expressions by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 174:7663–7670

    Article  Google Scholar 

  • Zhou H, Yao F, Roberts DP, Lessie TG (2003) AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr Microbiol 47:174–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from UGC-MJRP 42-481/2013(SR) and UGC-BSR-RFSMS F.4-1/2006(BSR) 7-369/2012(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hameeda Bee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Archana, K., Sathi Reddy, K., Ravinder, P., Yahya Khan, M., Bee, H. (2019). Quorum Sensing: Communication Complexity for Resilience of Plant-Microbe Interaction. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_12

Download citation

Publish with us

Policies and ethics