Skip to main content

Metabolic Adaptations in Diabetes Mellitus and Cancer

  • Chapter
  • First Online:
Exploring Pancreatic Metabolism and Malignancy

Abstract

A web of interconnected and flexible metabolic pathways helps in maintaining cellular homeostasis. These flexible metabolic pathways are further deregulated to ensure cell survival during clinical conditions such as diabetes and cancer. In fact, complex metabolic programming is a hallmark of both diabetes and cancer. Normally, glucose absorbed by cells is catabolized through glycolysis to form pyruvate. Pyruvate fuels the citric acid cycle in the mitochondria of aerobic cells. Diabetic condition is presented with a battery of glycolytic abnormalities. Glucose-6-phosphate derived from glucose is converted back to glucose and pumped out of the cell. Similarly, pyruvate is also converted back to glucose. Import of glucose via GLUT4 is also impaired during diabetes. In spite of decelerated glycolysis, gluconeogenesis also occurs in diabetes. In diabetic settings, cells adapt to using acetyl-CoA derived from fatty acids to fuel citric acid cycle. Cancer cells also present with several metabolic abnormalities where glucose-6-phosphate powers pentose phosphate pathway and contribute ribose required for the rapid proliferation of transformed cells. Cancer cells convert pyruvate to lactate, which is transported out of cells. Glutamine provides the majority of anaplerotic carbon for the citric acid cycle, and acetyl-CoA derived from citrate contributes to the synthesis of fatty acids. Both 3-phosphoglycerate and pyruvate are spared for the synthesis of amino acids. In the case of diabetes, cells uptake very less glucose compared with normal cells, whereas in case of cancer, cells consume excess glucose due to aerobic glycolysis. In this chapter, we will discuss the major components of the metabolic deregulations in diabetes and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Acetyl-CoA carboxylase

ACLY:

ATP citrate lyase

ACS:

Acetyl-CoA synthetase

ACTH:

Adrenocorticotropic hormone

AGEs:

Advanced glycation end products

AKT:

Serine-threonine protein kinase

AMPK:

AMP-dependent protein kinase

BRAF:

B-Raf proto-oncogene

CCK:

Cholecystokinin

CML:

Carboxymethyl-lysine

c-Myc:

Cellular myelocytomatosis

CREBP:

cAMP-response element-binding protein

DAG:

Diacylglycerol

ETC:

Electron transport chain

FAS:

Fatty acid synthase

G6P:

Glucose-6-phosphate

G6PDH:

Glucose-6-phosphate dehydrogenase

GLP1:

Glucagon-like peptide-1

GLS1:

Glutaminase-1/L-glutaminase

GLUT4:

Glucose transporter type 4

GOLD:

Glyoxal-lysine dimer

GPAT:

Glycerol-3-phosphate acyltransferase

GSH:

Glutathione

GSSG:

Glutathione disulfide

HIF1α:

Hypoxia-inducible factor 1α

IDH:

Isocitrate dehydrogenase

IDO:

Indoleamine 2,3-dioxygenase

IGFBP3:

Insulin-like growth factor-binding protein

IKKb:

Inhibitory kB kinase b

IRS:

Insulin receptor substrate

LDHA:

Lactate dehydrogenase A

MOLD:

Methylglyoxal-lysine dimer

mTORC:

Mammalian target of rapamycin complex 1

NF-kB:

Nuclear factor-kB

α-KG:

α-ketoglutarate

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

PEPCK:

Phosphoenolpyruvate carboxykinase

PFK:

Phosphofructokinase

PHGDH:

Phosphoglycerate dehydrogenase

PTEN:

Phosphatase and tensin homolog

SCD:

Stearoyl-CoA desaturase

SHMT1:

Serine hydroxymethyltransferase

SREBP1:

Sterol response element-binding protein

T1D and T2D:

Type 1 diabetes and type 2 diabetes

TDO:

Tryptophan 2,3-dioxygenase

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TPH1:

Tryptophan hydroxylase 1

References

  1. Roder PV et al (2016) Pancreatic regulation of glucose homeostasis. Exp Mol Med 48:e219

    Article  CAS  Google Scholar 

  2. Kahn CR (1985) The molecular mechanism of insulin action. Annu Rev Med 36:429–451

    Article  CAS  Google Scholar 

  3. Scott RV, Bloom SR (2018) Problem or solution: the strange story of glucagon. Peptides 100:36–41

    Article  CAS  Google Scholar 

  4. Habegger KM et al (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6(12):689–697

    Article  CAS  Google Scholar 

  5. Sherwin RS, Sacca L (1984) Effect of epinephrine on glucose metabolism in humans: contribution of the liver. Am J Phys 247(2 Pt 1):E157–E165

    CAS  Google Scholar 

  6. Aronoff SL et al (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17(3):183–190

    Article  Google Scholar 

  7. Blair M (2016) Diabetes mellitus review. Urol Nurs 36(1):27–36

    Article  Google Scholar 

  8. Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6(6):850–867

    Article  Google Scholar 

  9. Kumar PA, Chitra PS, Reddy GB (2013) Metabolic syndrome and associated chronic kidney diseases: nutritional interventions. Rev Endocr Metab Disord 14(3):273–286

    Article  CAS  Google Scholar 

  10. Tanner LB et al (2018) Four key steps control glycolytic flux in mammalian cells. Cell Syst 7(1):49–62 e8

    Article  CAS  Google Scholar 

  11. Efendic S, Wajngot A, Vranic M (1985) Increased activity of the glucose cycle in the liver: early characteristic of type 2 diabetes. Proc Natl Acad Sci USA 82(9):2965–2969

    Article  CAS  Google Scholar 

  12. Lickley HL et al (1987) Importance of glucagon in the control of futile cycling as studied in alloxan-diabetic dogs. Diabetologia 30(3):175–182

    Article  CAS  Google Scholar 

  13. Henly DC, Phillips JW, Berry MN (1996) Suppression of glycolysis is associated with an increase in glucose cycling in hepatocytes from diabetic rats. J Biol Chem 271(19):11268–11271

    Article  CAS  Google Scholar 

  14. Barzilai N, Rossetti L (1993) Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem 268(33):25019–25025

    CAS  PubMed  Google Scholar 

  15. Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14(4):263–283

    Article  CAS  Google Scholar 

  16. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297(3):E578–E591

    Article  CAS  Google Scholar 

  17. Anil Kumar P, Bhanuprakash Reddy G (2007) Focus on molecules: aldose reductase. Exp Eye Res 85(6):739–740

    Article  CAS  Google Scholar 

  18. Srivastava SK et al (2011) Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 191(1-3):330–338

    Article  CAS  Google Scholar 

  19. Suryanarayana P et al (2004) Inhibition of aldose reductase by tannoid principles of Emblica officinalis: implications for the prevention of sugar cataract. Mol Vis 10:148–154

    CAS  PubMed  Google Scholar 

  20. Kumar Pasupulati A, Chitra PS, Reddy GB (2016) Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 7(5-6):293–309

    Article  CAS  Google Scholar 

  21. Kumar PA et al (2016) Carboxymethyl lysine induces EMT in podocytes through transcription factor ZEB2: implications for podocyte depletion and proteinuria in diabetes mellitus. Arch Biochem Biophys 590:10–19

    Article  CAS  Google Scholar 

  22. Kumar PA, Kumar MS, Reddy GB (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J 408(2):251–258

    Article  CAS  Google Scholar 

  23. Muthenna P et al (2014) Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chem Biol Interact 222:68–76

    Article  CAS  Google Scholar 

  24. Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787

    Article  CAS  Google Scholar 

  25. Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  CAS  Google Scholar 

  26. Kamphorst JJ et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 110(22):8882–8887

    Article  CAS  Google Scholar 

  27. Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    Article  CAS  Google Scholar 

  28. Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665

    Article  CAS  Google Scholar 

  29. Samudio I et al (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120(1):142–156

    Article  CAS  Google Scholar 

  30. Talebi A et al (2018) Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat Commun 9(1):2500

    Article  Google Scholar 

  31. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  Google Scholar 

  32. Hammoudi N et al (2011) Metabolic alterations in cancer cells and therapeutic implications. Chin J Cancer 30(8):508–525

    Article  CAS  Google Scholar 

  33. Matoba S et al (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    Article  CAS  Google Scholar 

  34. Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427–434

    Article  CAS  Google Scholar 

  35. Elstrom RL et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    Article  CAS  Google Scholar 

  36. Chapuis N et al (2010) Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 24(10):1686–1699

    Article  CAS  Google Scholar 

  37. Wokolorczyk D et al (2008) A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res 68(23):9982–9986

    Article  CAS  Google Scholar 

  38. Chiaradonna F et al (2006) Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim Biophys Acta 1757(9-10):1338–1356

    Article  CAS  Google Scholar 

  39. Baracca A et al (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797(2):314–323

    Article  CAS  Google Scholar 

  40. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Rajkishor Nishad, Lakshmi Prasanna, and Deepti Nabariya for their assistance during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Pasupulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasupulati, A.K., Dunna, N.R., Talluri, S. (2019). Metabolic Adaptations in Diabetes Mellitus and Cancer. In: Nagaraju, G., BM Reddy, A. (eds) Exploring Pancreatic Metabolism and Malignancy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9393-9_4

Download citation

Publish with us

Policies and ethics