Skip to main content

Methods and Models in Exploring Pancreatic Functions

  • Chapter
  • First Online:
Exploring Pancreatic Metabolism and Malignancy

Abstract

Pancreatitis is a condition in which the pancreas becomes inflamed due to dysfunction of the digestive system which causes the release of active enzymes and damage the pancreas. Various methods have been proposed to identify the disease condition and model for the severity of pancreatitis and pancreatic cancer. All have unique advantages and drawbacks, hence the need to identify novel models for evaluation of pancreatic dysfunctions with high accuracy, sensitivity, and output for the diagnosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28(5):325–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189(4200):347–358

    Article  CAS  PubMed  Google Scholar 

  3. Williams JA (2001) Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 63:77–97

    Article  CAS  PubMed  Google Scholar 

  4. Sohma Y, Gray MA, Imai Y, Argent BE (2001) 150 mM HCO3(−)—how does the pancreas do it? Clues from computer modelling of the duct cell. JOP 2(4 Suppl):198–202

    CAS  PubMed  Google Scholar 

  5. Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377–409

    Article  CAS  PubMed  Google Scholar 

  6. Whitcomb DC, Ermentrout GB (2004) A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice. Pancreas 29(2):30–40

    Article  Google Scholar 

  7. Ballian N, Brunicardi FC (2007) Islet vasculature as a regulator of endocrine pancreas function. World J Surg 31(4):705–714

    Article  PubMed  Google Scholar 

  8. Korc M, Iwamoto Y, Sankaran H, Williams JA, Goldfine ID (1981) Insulin action in pancreatic acini from streptozotocin-treated rats. I. Stimulation of protein synthesis. Am J Physiol 240(1):56–62

    Article  Google Scholar 

  9. Korc M, Sankaran H, Wong KY, Williams JA, Goldfine ID (1978) Insulin receptors in isolated mouse pancreatic acini. Biochem Biophys Res Commun 84(2):293–299

    Article  CAS  PubMed  Google Scholar 

  10. Sankaran H, Iwamoto Y, Korc M, Williams JA, Goldfine ID (1981) Insulin action in pancreatic acini from streptozotocin-treated rats. II. Binding of 125I-insulin to receptors. Am J Phys 240(1):63–68

    Google Scholar 

  11. Pandol S, Edderkaoui M, Gukovsky I, Lugea A, Gukovskaya A (2009) Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 7(11 Suppl):44–47

    Article  CAS  Google Scholar 

  12. Apte MV, Pirola RC, Wilson JS (2006) Battle-scarred pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. J Gastroenterol Hepatol 21(Suppl 3):97–101

    Article  CAS  Google Scholar 

  13. Alain V, Phillips PA, Xu Z, Goldstein D, Pirola RC, Wilson JS, Minoti V (2008) Pancreatic stellate cells and pancreatic cancer cells: an unholy alliance. Cancer Res 68(19):7707–7710

    Article  CAS  Google Scholar 

  14. Bachem Max G, Zhou S, Buck K, Schneiderhan W, Siech M (2008) Pancreatic stellate cells—role in pancreas cancer. Langenbeck’s Arch Surg 393(6):891–900

    Article  CAS  Google Scholar 

  15. Bachem Max G, Zhou Z, Zhou S, Siech M (2006) Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. J Gastroenterol Hepatol 21(Suppl 3):92–96

    Article  CAS  Google Scholar 

  16. Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146(3):1025–1034

    Article  CAS  PubMed  Google Scholar 

  17. Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5):540–547

    Article  CAS  PubMed  Google Scholar 

  18. Parkin CA, Ingham PW (2008) The adventures of Sonic Hedgehog in development and repair. I. Hedgehog signaling in gastrointestinal development and disease. Am J Physiol Gastrointest Liver Physiol 294(2):G363–G367

    Article  CAS  PubMed  Google Scholar 

  19. Hansen NJ, Antonin W, Edwardson JM (1999) Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem 274(32):22871–22876

    Article  CAS  PubMed  Google Scholar 

  20. Hirohide O, Mine T, Shibata H, Ueda N, Tsuchida T, Fujita T (1999) Involvement of Rab4 in regulated exocytosis of rat pancreatic acini. Gastroenterology 116(4):943–952

    Article  Google Scholar 

  21. Xuequn C, Li C, Izumi T, Ernst SA, Andrews PC, Williams JA (2004) Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem Biophys Res Commun 323(4):1157–1162

    Article  CAS  Google Scholar 

  22. Gaisano HY, Lutz MP, Leser J, Sheu L, Lynch G, Tang L et al (2001) Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J Clin Invest 108(11):1597–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cosen-Binker LI, Binker MG, Wang CC, Hong W, Gaisano HY (2008) VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest 118(7):2535–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  25. Whitcomb DC (2010) Genetic aspects of pancreatitis. Annu Rev Med 61:413–424

    Article  CAS  PubMed  Google Scholar 

  26. Substance abuse and Mental Health Services Administration. Summary of findings from the 2000 National Household Survey on Drug Abuse

    Google Scholar 

  27. Anthony JC, Echeagaray-Wagner F (2000) Epidemiologic analysis of alcohol and tobacco use. Alcohol Res Health 24(4):201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramstedt M (2004) Alcohol and pancreatitis mortality at the population level: experiences from 14 western countries. Addiction 99(10):1255–1261

    Article  PubMed  Google Scholar 

  29. Strate T, Yekebas E, Knoefel WT, Bloechle C, Izbicki JR (2002) Pathogenesis and the natural course of chronic pancreatitis. Eur J Gastroenterol Hepatol 14(9):929–934

    Article  PubMed  Google Scholar 

  30. Schenker S, Montalvo R (1998) Alcohol and the pancreas. Recent Dev Alcohol 14:41–65

    Article  CAS  PubMed  Google Scholar 

  31. Truninger K, Malik N, Ammann RW, Muellhaupt B, Seifert B, Müller HJ, Blum HE (2001) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. Am J Gastroenterol 96:2657–2661

    Article  CAS  PubMed  Google Scholar 

  32. Monaghan KG, Jackson CE, KuKuruga DL, Feldman GL (2000) Mutation analysis of the cystic fibrosis and cationic trypsinogen genes in patients with alcohol-related pancreatitis. Am J Med Genet 94(2):120–124

    Article  CAS  PubMed  Google Scholar 

  33. Bosron WF, Li TK (1986) Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology 6(3):502–510

    Article  CAS  PubMed  Google Scholar 

  34. Haber P, Wilson J, Apte M, Korsten M, Pirola R (1995) Individual susceptibility to alcoholic pancreatitis: still an enigma. J Lab Clin Med 125(3):305–312

    CAS  PubMed  Google Scholar 

  35. Kimura S, Okabayashi Y, Inushima K, Kochi T, Yutsudo Y, Kasuga M (2000) Alcohol and aldehyde dehydrogenase polymorphisms in Japanese patients with alcohol-induced chronic pancreatitis. Dig Dis Sci 45(10):2013–2017

    Article  CAS  PubMed  Google Scholar 

  36. Frenzer A, Butler WJ, Norton ID, Wilson JS, Apte MV, Pirola RC, Ryan P, Roberts-Thomson IC (2002) Polymorphism in alcohol-metabolizing enzymes, glutathione S-transferases and apolipoprotein E and susceptibility to alcohol-induced cirrhosis and chronic pancreatitis. J Gastroenterol Hepatol 17(2):177–182

    Article  CAS  PubMed  Google Scholar 

  37. Maruyama K, Takahashi H, Matsushita S, Nakano M, Harada H, Otsuki M, Ogawa M, Suda K, Baba T, Honma T, Moroboshi T, Matsuno M (1999) Genotypes of alcohol-metabolizing enzymes in relation to alcoholic chronic pancreatitis in Japan. Alcohol Clin Exp Res 23(4):85S–91S

    Article  CAS  PubMed  Google Scholar 

  38. Yang B, O’Reilly DA, Demaine AG, Kingsnorth AN (2001) Study of polymorphisms in the CYP2E1 gene in patients with alcoholic pancreatitis. Alcohol 23(2):91–97

    Article  CAS  PubMed  Google Scholar 

  39. Chao YC, Young TH, Chang WK, Tang HS, Hsu CT (1995) An investigation of whether polymorphisms of cytochrome P4502E1 are genetic markers of susceptibility to alcoholic end-stage organ damage in a Chinese population. Hepatology 22:1409–1414

    CAS  PubMed  Google Scholar 

  40. Verlaan M, Te Morsche RH, Roelofs HM, Laheij RJ, Jansen JB, Peters WH, Drenth JP (2004) Genetic polymorphisms in alcohol-metabolizing enzymes and chronic pancreatitis. Alcohol Alcohol 39:20–24

    Article  CAS  PubMed  Google Scholar 

  41. Kim MS, Lee DH, Kang HS, Park HS, Jung S, Lee JW et al (2004) Genetic polymorphisms of alcohol-metabolizing enzymes and cytokines in patients with alcohol induced pancreatitis and alcoholic liver cirrhosis. Korean J Gastroenterol 43:355–363

    PubMed  Google Scholar 

  42. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

  43. Bartsch H, Malaveille C, Lowenfels AB, Maisonneuve P, Hautefeuille A, Boyle P (1998) Genetic polymorphism of N-acetyltransferases, glutathione S-transferase M1 and NAD(P)H: quinone oxidoreductase in relation to malignant and benign pancreatic disease risk. The International Pancreatic Disease Study Group. Eur J Cancer Prev 7:215–223

    Article  CAS  PubMed  Google Scholar 

  44. Schneider A, Tögel S, Barmada MM, Whitcomb DC (2004) Genetic analysis of the glutathione s-transferase genes MGST1, GSTM3, GSTT1, and GSTM1 in patients with hereditary pancreatitis. J Gastroenterol 39:783–787

    Article  CAS  PubMed  Google Scholar 

  45. Burim RV, Canalle R, Martinelli Ade L, Takahashi CS (2004) Polymorphisms in glutathione S-transferases GSTM1, GSTT1 and GSTP1 and cytochromes P450 CYP2E1 and CYP1A1 and susceptibility to cirrhosis or pancreatitis in alcoholics. Mutagenesis 19:291–298

    Article  CAS  PubMed  Google Scholar 

  46. Tse F, Yuan Y (2012) Early routine endoscopic retrograde cholangiopancreatography strategy versus early conservative management strategy in acute gallstone pancreatitis. Cochrane Database Syst Rev 16(5):CD009779. http://sci-hub.tw/10.1002/14651858.CD009779.pub2

    Google Scholar 

  47. Goecke H, Forssmann U, Uguccioni M, Friess H, Conejo-Garcia JR, Zimmermann A, Baggiolini M, Büchler MW (2000) Macrophages infiltrating the tissue in chronic pancreatitis express the chemokine receptor CCR5. Surgery 128:806–814

    Article  CAS  PubMed  Google Scholar 

  48. Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC (2005) Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol 166(1):93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hunger RE, Mueller C, Z’Graggen K, Friess H, Büchler MW (1997) Cytotoxic cells are activated in cellular infiltrates of alcoholic chronic pancreatitis. Gastroenterology 112(5):1656–1663

    Article  CAS  PubMed  Google Scholar 

  50. Schmitz-Winnenthal H, Pietsch DH, Schimmack S, Bonertz A, Udonta F, Ge Y, Galindo L, Specht S, Volk C, Zgraggen K, Koch M, Büchler MW, Weitz J, Beckhove P (2010) Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology 138(3):1178–1188

    Article  PubMed  Google Scholar 

  51. Detlefsen S, Sipos B, Feyerabend B, Klöppel G (2006) Fibrogenesis in alcoholic chronic pancreatitis: the role of tissue necrosis, macrophages, myofibroblasts and cytokines. Mod Pathol 19(8):1019–1026

    Article  CAS  PubMed  Google Scholar 

  52. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588

    Article  CAS  PubMed  Google Scholar 

  53. Leppkes M, Nowecki S, Wirtz SJ, Becker C, Neurath MF (2014) Intestinal Microbiota Contributes to the Pathogenesis of IL-17A Induced Chronic Pancreatitis. Gastroenterology 146(5):S–68

    Article  Google Scholar 

  54. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360

    Article  PubMed  Google Scholar 

  55. Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A (2010) Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol 44(8):551–561

    Article  PubMed  Google Scholar 

  56. Moayyedi P, Surette MG, Kim PT, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized, controlled trial. Gastroenterology 149(1):102–109

    Article  PubMed  Google Scholar 

  57. Okabe Y, Medzhitov R (2014) Tissue-specifc signals control reversible program of localization and functional polarization of macrophages. Cell 157(4):832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O, Akira S (2013) Critical role of Trib1 in diferentiation of tissue-resident M2-like macrophages. Nature 495(7442):524–528

    Article  CAS  PubMed  Google Scholar 

  60. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  61. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  CAS  PubMed  Google Scholar 

  62. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  PubMed  Google Scholar 

  63. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leblond MM, Gerault AN, Corroyer-Dulmont A, MacKenzie ET, Petit E, Bernaudin M et al (2016) Hypoxia induces macrophage polarization and re-education toward an M2 phenotype in U87 and U251 glioblastoma models. Oncoimmunology 5(1):e1056442

    Article  PubMed  CAS  Google Scholar 

  66. Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X et al (2016) Hypoxia promotes glioma-associated macrophage infltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7(49):80521–80542

    Article  PubMed  PubMed Central  Google Scholar 

  67. Colegio OR (2016) Lactic acid polarizes macrophages to a tumor-promoting state. Oncoimmunology 5(3):e1014774. Jagannath S, Garg PK (2017) Novel and experimental therapies in chronic pancreatitis. Dig Dis Sci 62(7):1751–1761

    Article  PubMed  CAS  Google Scholar 

  68. Foitzik T, Hotz HG, Eibl G, Buhr HJ (2000) Experimental models of acute pancreatitis: are they suitable for evaluating therapy? Int J Color Dis 15:127–135

    Article  CAS  Google Scholar 

  69. Abu-Zidan FM, Windsor JA (2002) Lexipafant and acute pancreatitis: a critical appraisal of the clinical trials. Eur J Surg 168:215–219

    Article  CAS  PubMed  Google Scholar 

  70. Singh VP, Chari ST (2005) Protease inhibitors in acute pancreatitis: lessons from the bench and failed clinical trials. Gastroenterology 128:2172–2174

    Article  PubMed  Google Scholar 

  71. Churg A, Richter WR (1971) Early changes in the exocrine pancreas of the dog and rat after ligation of the pancreatic duct. A light and electron microscopic study. Am J Pathol 63:521–546

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Neuschwander-Tetri BA, Burton FR, Presti ME, Britton RS, Janney CG, Garvin PR et al (2000) Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Dig Dis Sci 45:665–674

    Article  CAS  PubMed  Google Scholar 

  73. Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM (2011) Animal models for investigating chronic pancreatitis. Fibrogenesis Tissue Repair 4:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S (2017) COX2/ mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 114(5):1117–1122.

    Article  CAS  Google Scholar 

  75. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics. 2010 CA Cancer J Clin 60:277–300. [PubMed]

    Google Scholar 

  76. Loos M, Kleeff J, Friess H, Büchler MW (2008) Surgical treatment of pancreatic cancer. Ann N Y Acad Sci 1138:169–180

    Article  PubMed  Google Scholar 

  77. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D et al (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33

    Article  CAS  PubMed  Google Scholar 

  78. Paulson AS, Tran Cao HS, Tempero MA, Lowy AM (2013) Therapeutic advances in pancreatic cancer. Gastroenterology 144:1316–1326

    Article  CAS  PubMed  Google Scholar 

  79. Guo J, Wang W, Liao P, Lou W, Ji Y, Zhang C et al (2009) Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis. Cancer Sci 100:2292–2301

    Article  CAS  PubMed  Google Scholar 

  80. Giovinazzo F, Turri G, Zanini S, Butturini G, Scarpa A, Bassi C (2012) Clinical implications of biological markers in pancreatic ductal adenocarcinoma. Surg Oncol 21:e171–e182

    Article  PubMed  Google Scholar 

  81. Kaur S, Baine MJ, Jain M, Sasson AR, Batra SK (2012) Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med 6:597–612

    Article  CAS  PubMed  Google Scholar 

  82. Rojas A, Delgado-Lopez F, Perez-Castro R, Gonzalez I, Romero J, Rojas I et al (2016) HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol 37(3):3321–3329

    Article  CAS  PubMed  Google Scholar 

  83. Rufell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472

    Article  CAS  Google Scholar 

  84. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lappat EJ, Cawein M (1964) A study of the leukemoid response to transplantable A-280 tumor in mice. Cancer Res 24:302–311

    CAS  PubMed  Google Scholar 

  86. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Kayoumu A, Lu G, Xu P, Qiu X, Chen L (2016) Experimental models in syrian golden hamster replicate human acute pancreatitis. Sci Rep 15(6):28014

    Article  CAS  Google Scholar 

  89. Manrai M, Kochhar R, Gupta V, Yadav TD, Dhaka N, Kalra N et al (2018) Outcome of acute pancreatic and peripancreatic collections occurring in patients with acute pancreatitis. Ann Surg 267(2):357–363

    Article  PubMed  Google Scholar 

  90. de Oliveira AR, Kunitake T, Koike MK, Machado MC, Souza HP (2017) Effects of diazoxide in experimental acute necrotizing pancreatitis. Clinics (Sao Paulo) 1;72(2):125–129

    Google Scholar 

  91. Lombardi B, Estes LW, Longnecker DS (1975) Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol 79:465–480

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tani S, Itoh H, Okabayashi Y, Nakamura T, Fujii M, Fujisawa T et al (1990) New model of acute necrotizing pancreatitis induced by excessive doses of arginine in rats. Dig Dis Sci 35:367–374

    Article  CAS  PubMed  Google Scholar 

  93. Opie EL (1901) The relation of cholelithiasis to disease of the pancreas and to fat-necrosis. Bull Johns Hopkins Hosp 12:182–188

    Google Scholar 

  94. Ohshio G, Saluja A, Steer ML (1991) Effects of short-term pancreatic duct obstruction in rats. Gastroenterology 100:196–202

    Article  CAS  PubMed  Google Scholar 

  95. Watanabe S, Abe K, Anbo Y, Katoh H (1995) Changes in the mouse exocrine pancreas after pancreatic duct ligation: a qualitative and quantitative histological study. Arch Histol Cytol 58:365–374

    Article  CAS  PubMed  Google Scholar 

  96. Runzi M, Saluja A, Kaiser A, Gerdes D, Sengupta A, Steer ML (1995) Biochemical and morphological changes that characterise recovery from necrotising biliary pancreatitis in the opossum. Gut 37:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamamoto M, Otani M, Otsuki M (2006) A new model of chronic pancreatitis in rats. Am J Physiol Gastrointest Liver Physiol 291:G700–G708

    Article  CAS  PubMed  Google Scholar 

  98. Neuschwander-Tetri BA, Bridle KR, Wells LD, Marcu M, Ramm GA (2000) Repetitive acute pancreatic injury in the mouse induces procollagen alpha1(I) expression colocalized to pancreatic stellate cells. Lab Investig 80:143–150

    Article  CAS  PubMed  Google Scholar 

  99. Vonlaufen A, Xu Z, Daniel B (2007) Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 133:1293–1303

    Article  CAS  PubMed  Google Scholar 

  100. Sparmann G, Merkord J, Jäschke A, Nizze H, Lohr M (1997) Pancreatic fibrosis in experimental pancreatitis induced by dibutyltin dichloride. Gastroenterology 112(5):1664–1672

    Article  CAS  PubMed  Google Scholar 

  101. Weaver C, Bishop AE, Polak JM (1994) Pancreatic changes elicited by chronic administration of excess L-arginine. Exp Mol Pathol 60:71–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the DST-FIST, New Delhi (SR/FST/LSI-568/2013), DST-EMR (EMR/2016/002694), and GITAM University for providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Rao Malla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malla, R.R., Kumari, S., Amajala, K.C., Deepak KGK, Gugalavath, S., Rokkam, P. (2019). Methods and Models in Exploring Pancreatic Functions. In: Nagaraju, G., BM Reddy, A. (eds) Exploring Pancreatic Metabolism and Malignancy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9393-9_15

Download citation

Publish with us

Policies and ethics