Skip to main content

Role of Heat Shock Protein 90 in Diabetes and Pancreatic Cancer Management

  • Chapter
  • First Online:
Exploring Pancreatic Metabolism and Malignancy

Abstract

Heat shock protein 90 (Hsp90) plays a key role in the activation of client proteins, which implicate Hsp90 in various biological processes, specifically coordinating regulatory mechanisms in order to control their activity. One of the key regulators responsible for the upregulation of Hsp90 is heat shock factor (HSF1), whose primary role is to bind heat shock elements (HSEs) with Hsp90 promoters. HSF1 functions by interacting with the transcriptional programming of Hsp90 and with integrate biological signals to regulate levels of Hsp90, especially during times of stress. Furthermore, not only are these Hsp90 protein chaperones upregulated but they can also be released from pancreatic beta cells during pro-inflammatory circumstances. Additionally, Hsp90 interferes with survival and metastatic pathways that are associated with pancreatic cancer (PC) progression. Future investigations on protein chaperons that are associated with Hsp90 may lead to the identification of biomarkers for diseases such as diabetes and PCs and potentially lead to therapeutic strategies in management of these chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-DMAG:

17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin

ATP:

Adenosine triphosphate

CTA:

C-terminal transactivation

DBD:

DNA-binding domain

FAK:

Focal adhesion kinase

HIF-1a:

Hypoxia-induced factor-1α

HSEs:

Heat shock elements

HSF:

Heat shock factor

Hsp90:

Heat shock protein 90

HSR:

Heat shock response

IGF-IR:

Insulin-like growth factor-1 receptor

IL-6:

Interleukin-6

NK cells:

Natural killer cells

NTA:

N-terminal transactivation

PBMC:

Peripheral blood mononuclear cell

PC:

Pancreatic cancer

T1D:

Type 1 diabetes

VEGF:

Vascular endothelial growth factor

References

  1. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci CMLS 59(10):1640–1648

    CAS  PubMed  Google Scholar 

  2. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761

    CAS  PubMed  Google Scholar 

  3. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515

    CAS  PubMed  Google Scholar 

  4. Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18(5):591–605

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ammirante M, Rosati A, Gentilella A, Festa M, Petrella A, Marzullo L, Pascale M, Belisario M, Leone A, Turco M (2008) The activity of hsp90α promoter is regulated by NF-κB transcription factors. Oncogene 27(8):1175

    CAS  PubMed  Google Scholar 

  6. Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12(6):1063–1073

    CAS  PubMed  Google Scholar 

  7. Zuehlke AD, Beebe K, Neckers L, Prince T (2015) Regulation and function of the human HSP90AA1 gene. Gene 570(1):8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, De Massy B, Nef S, Picard D (2010) The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5(12):e15770

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pearl LH (2005) Hsp90 and Cdc37–a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61

    CAS  PubMed  Google Scholar 

  10. Hořejší Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850

    PubMed  Google Scholar 

  11. Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24(18):2019–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophy Acta (BBA)-Mol Cell Res 1823(3):674–682

    CAS  Google Scholar 

  13. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336

    CAS  Google Scholar 

  14. Lindquist S (2009) Protein folding sculpting evolutionary change. In: Cold Spring Harbor symposia on quantitative biology: 2009. Cold Spring Harbor Laboratory Press, Woodbury, pp 103–108

    Google Scholar 

  15. Yahara I (1999) The role of HSP90 in evolution. Genes Cells 4(7):375–379

    CAS  PubMed  Google Scholar 

  16. Williams TA, Fares MA (2010) The effect of chaperonin buffering on protein evolution. Genome Biol Evol 2:609–619

    PubMed Central  Google Scholar 

  17. Zhao R, Davey M, Hsu Y-C, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727

    CAS  PubMed  Google Scholar 

  18. Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’via transient dimerization of the N-terminal domains. EMBO J 19(16):4383–4392

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440(7087):1013

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658

    CAS  Google Scholar 

  21. Meyer P, Prodromou C, Liao C, Hu B, Roe SM, Vaughan CK, Vlasic I, Panaretou B, Piper PW, Pearl LH (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(3):511–519

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6):855–864

    CAS  PubMed  Google Scholar 

  23. Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15(7):1118–1131

    CAS  PubMed  Google Scholar 

  24. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841–853

    CAS  PubMed  Google Scholar 

  25. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65(3):363–366

    CAS  PubMed  Google Scholar 

  26. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    CAS  PubMed  Google Scholar 

  27. Holmberg CI, Tran SE, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27(12):619–627

    CAS  PubMed  Google Scholar 

  28. Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9(2):122

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nieto-Sotelo J, Wiederrecht G, Okuda A, Parker CS (1990) The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62(4):807–817

    CAS  PubMed  Google Scholar 

  30. Sakurai H, Enoki Y (2010) Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 277(20):4140–4149

    CAS  PubMed  Google Scholar 

  31. Peteranderl R, Rabenstein M, Shin Y-K, Liu CW, Wemmer DE, King DS, Nelson HC (1999) Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 38(12):3559–3569

    CAS  PubMed  Google Scholar 

  32. Farkas T, Kutskova YA, Zimarino V (1998) Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol 18(2):906–918

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259(5092):230–234

    CAS  PubMed  Google Scholar 

  34. Zuo J, Baler R, Dahl G, Voellmy R (1994) Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 14(11):7557–7568

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu M, Lee Y-J, Park S-M, Kang HS, Kang SW, Kim S, Park J-S (2009) Aromatic-participant interactions are essential for disulfide-bond-based trimerization in human heat shock transcription factor 1. Biochemistry 48(18):3795–3797

    CAS  PubMed  Google Scholar 

  36. Ahn S-G, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17(4):516–528

    CAS  PubMed Central  Google Scholar 

  37. Bulman AL, Nelson HCM (2005) Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins: Struct Funct Bioinf 58(4):826–835

    CAS  Google Scholar 

  38. Pattaramanon N, Sangha N, Gafni A (2007) The carboxy-terminal domain of heat-shock factor 1 is largely unfolded but can be induced to collapse into a compact, partially structured state. Biochemistry 46(11):3405–3415

    CAS  PubMed  Google Scholar 

  39. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10(21):2782–2793

    CAS  PubMed  Google Scholar 

  41. Cho HS, Liu CW, Damberger FF, Pelton JG, Nelson HCM, Wemmer DE (1996) Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci 5(2):262–269

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonner JJ, Heyward S, Fackenthal DL (1992) Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol Cell Biol 12(3):1021–1030

    CAS  PubMed Central  Google Scholar 

  43. Chen T, Li F, Chen B-S (2009) Cross-talks of sensory transcription networks in response to various environmental stresses. Interdiscip Sci: Comput Life Sci 1(2):162–162

    Google Scholar 

  44. Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62(4):793–805

    CAS  PubMed  Google Scholar 

  45. Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18(9):4949–4960

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19(12):8033–8041

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    CAS  Google Scholar 

  48. Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8(9):3761–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pelham HR (1982) A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell 30(2):517–528

    CAS  PubMed  Google Scholar 

  50. Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239(4844):1139–1142

    CAS  PubMed  Google Scholar 

  51. Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhack A, Bumm T, Bogen B, Einsele H, Bargou RC (2013) The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol 160(4):465–476

    CAS  PubMed  Google Scholar 

  52. Watkins RA, Evans-Molina C, Blum JS, DiMeglio LA (2014) Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res 164(2):110–121

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, Pietropaolo M, Arvan PR, Von Herrath M, Markel DS (2011) How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 60(5):1370–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Soleimanpour SA, Stoffers DA (2013) The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? Trends Endocrinol Metab 24(7):324–331

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Watkins RA, Evans-Molina C, Terrell JK, Day KH, Guindon L, Restrepo IA, Mirmira RG, Blum JS, DiMeglio LA (2016) Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl Res 168:96-106. e101

    Google Scholar 

  57. Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta (BBA)-Mol Cell Res 1823(3):730–741

    CAS  Google Scholar 

  58. Ocaña GJ, Pérez L, Guindon L, Deffit SN, Evans-Molina C, Thurmond DC, Blum JS (2017) Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151(2):198–210

    PubMed  PubMed Central  Google Scholar 

  59. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 5(4):219

    CAS  Google Scholar 

  60. Qin H-Y, Mahon JL, Atkinson MA, Chaturvedi P, Lee-Chan E, Singh B (2003) Type 1 diabetes alters anti-hsp90 autoantibody isotype. J Autoimmun 20(3):237–245

    CAS  PubMed  Google Scholar 

  61. Marhfour I, Lopez X, Lefkaditis D, Salmon I, Allagnat F, Richardson S, Morgan N, Eizirik DL (2012) Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55(9):2417–2420

    CAS  PubMed  Google Scholar 

  62. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG (2012) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61(4):818–827

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, Mathis D, Hotamisligil GS (2013) Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci Transl Med 5(211):211ra156-211ra156

    Google Scholar 

  64. Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M (2015) Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58(10):2307–2316

    CAS  PubMed  Google Scholar 

  65. Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, Ludwig RJ, Zillikens D, Schmidt E, Fischer TW (2013) Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. PLoS One 8(7):e70496

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ripley B, Isenberg D, Latchman D (2001) Elevated levels of the 90 kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 17(4):341–346

    CAS  PubMed  Google Scholar 

  67. Greenbaum CJ, Beam CA, Boulware D, Gitelman SE, Gottlieb PA, Herold KC, Lachin JM, McGee P, Palmer JP, Pescovitz MD (2012) Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite type 1 diabetes TrialNet data. Diabetes 61(8):2066–2073

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Steck AK, Vehik K, Bonifacio E, Lernmark A, Ziegler A-G, Hagopian WA, She J, Simell O, Akolkar B, Krischer J (2015) Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 38(5):808–813

    PubMed  PubMed Central  Google Scholar 

  69. Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 265(1):63–74

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8(1):422

    PubMed Central  Google Scholar 

  71. Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3(3):213–217

    CAS  PubMed  Google Scholar 

  72. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8(4):S55–S61

    CAS  PubMed  Google Scholar 

  73. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82(8):488–499

    CAS  PubMed  Google Scholar 

  74. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res 62(9):2478–2482

    CAS  PubMed  Google Scholar 

  75. Gooljarsingh LT, Fernandes C, Yan K, Zhang H, Grooms M, Johanson K, Sinnamon RH, Kirkpatrick RB, Kerrigan J, Lewis T (2006) A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues. Proc Natl Acad Sci 103(20):7625–7630

    CAS  PubMed  Google Scholar 

  76. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407

    CAS  PubMed  Google Scholar 

  77. Banerji U, Judson I, Workman P (2003) The clinical applications of heat shock protein inhibitors in cancer-present and future. Curr Cancer Drug Targets 3(5):385–390

    CAS  PubMed  Google Scholar 

  78. Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP (2008) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14(23):7940–7946

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, Toft DO, Safgren SL, Erlichman C (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12(20):6087–6093

    CAS  PubMed  Google Scholar 

  80. Biamonte MA, Shi J, Hong K, Hurst DC, Zhang L, Fan J, Busch DJ, Karjian PL, Maldonado AA, Sensintaffar JL (2006) Orally active purine-based inhibitors of the heat shock protein 90. J Med Chem 49(2):817–828

    CAS  PubMed  Google Scholar 

  81. Zhang L, Fan J, Vu K, Hong K, Le Brazidec J-Y, Shi J, Biamonte M, Busch DJ, Lough RE, Grecko R (2006) 7 ‘-substituted benzothiazolothio-and pyridinothiazolothio-purines as potent heat shock protein 90 inhibitors. J Med Chem 49(17):5352–5362

    CAS  PubMed  Google Scholar 

  82. Stoeltzing O, Liu W, Reinmuth N, Fan F, Parikh AA, Bucana CD, Evans DB, Semenza GL, Ellis LM (2003) Regulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol 163(3):1001–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang R-F, Wang S-X, Zhang F-R, Peng L, Xiao Y, Zhang M (2005) Interleukin-1alpha, 6 regulate the secretion of vascular endothelial growth factor A, C in pancreatic cancer. Hepatobiliary Pancreat Dis Int: HBPD INT 4(3):460–463

    CAS  PubMed  Google Scholar 

  84. Masui T, Hosotani R, Doi R, Miyamoto Y, Tsuji S, Nakajima S, Kobayashi H, Koizumi M, Toyoda E, Tulachan SS (2002) Expression of IL-6 receptor in pancreatic cancer: involvement in VEGF induction. Anticancer Res 22(6C):4093–4100

    CAS  PubMed  Google Scholar 

  85. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319

    CAS  PubMed  Google Scholar 

  86. Büchler P, Reber HA, Büchler M, Shrinkante S, Büchler MW, Friess H, Semenza GL, Hines OJ (2003) Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 26(1):56–64

    PubMed  Google Scholar 

  87. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  88. Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE (2005) HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24(19):3110

    CAS  PubMed  Google Scholar 

  89. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552

    CAS  PubMed  Google Scholar 

  90. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    CAS  PubMed  Google Scholar 

  91. Stawowy P, Kallisch H, Kilimnik A, Margeta C, Seidah NG, Chrétien M, Fleck E, Graf K (2004) Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem Biophys Res Commun 321(3):531–538

    CAS  PubMed  Google Scholar 

  92. Terry J, Lubieniecka JM, Kwan W, Liu S, Nielsen TO (2005) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin Cancer Res 11(15):5631–5638

    CAS  PubMed  Google Scholar 

  93. Nair PN, De Armond DT, Adamo ML, Strodel WE, Freeman JW (2001) Aberrant expression and activation of insulin-like growth factor-1 receptor (IGF-1R) are mediated by an induction of IGF-1R promoter activity and stabilization of IGF-1R mRNA and contributes to growth factor independence and increased survival of the pancreatic cancer cell line MIA PaCa-2. Oncogene 20(57):8203

    CAS  PubMed  Google Scholar 

  94. Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M (1995) Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 55(10):2007–2011

    CAS  PubMed  Google Scholar 

  95. Chang C-Y, Li M-C, Liao S-L, Huang Y-L, Shen C-C, Pan H-C (2005) Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J Clin Neurosci 12(8):930–933

    CAS  PubMed  Google Scholar 

  96. Nilsson MB, Langley RR, Fidler IJ (2005) Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65(23):10794–10800

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115(2):202–213

    CAS  PubMed  Google Scholar 

  98. Dudley AC, Thomas D, Best J, Jenkins A (2005) A VEGF/JAK2/STAT5 axis may partially mediate endothelial cell tolerance to hypoxia. Biochem J 390(2):427–436

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6(2):107–121

    CAS  PubMed  Google Scholar 

  100. Rubio-Viqueira B, Mezzadra H, Nielsen ME, Jimeno A, Zhang X, Iacobuzio-Donahue C, Maitra A, Hidalgo M, Altiok S (2007) Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Mol Cancer Ther 6(2):515–523

    CAS  PubMed  Google Scholar 

  101. Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT (2005) The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65(11):4929–4938

    CAS  PubMed  Google Scholar 

  102. Bagatell R, Beliakoff J, David CL, Marron MT, Whitesell L (2005) Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int J Cancer 113(2):179–188

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinninti Santosh Sushma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sushma, P.S., Momin, S., Srivani, G. (2019). Role of Heat Shock Protein 90 in Diabetes and Pancreatic Cancer Management. In: Nagaraju, G., BM Reddy, A. (eds) Exploring Pancreatic Metabolism and Malignancy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9393-9_11

Download citation

Publish with us

Policies and ethics