Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 286 Accesses

Abstract

In terms of particle energy and species, the inner magnetosphere can be divided into three regions including radiation belts, ring current, and plasmasphere, which are overlapped in space. In theory, radiation belt energetic electrons, ring current ions and cold plasmaspheric electrons can be accelerated by ULF waves via drift/drift-bounce resonance, which is shown in Fig. 3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian M, Gallagher D, Avanov L (2004) IMAGE EUV observation of radially bifurcated plasmaspheric features: first observations of a possible standing ULF waveform in the inner magnetosphere. J Geophys Res 109(A1). https://doi.org/10.1029/2003JA009974

  2. Breneman A et al (2015) Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss. Nature 523(7559):193. https://doi.org/10.1038/nature14515

    Article  ADS  Google Scholar 

  3. Carpenter DL, Lemaire J (2004) The plasmasphere boundary layer. Ann Geophys 22(12):4291–4298

    Google Scholar 

  4. Carpenter DL, Anderson R, Calvert W, Moldwin M (2000) CRRES observations of density cavities inside the plasmasphere. J Geophys Res 105(A10):23323–23338. https://doi.org/10.1029/2000JA000013

    Article  ADS  Google Scholar 

  5. Chisham G (1996) Giant pulsations: an explanation for their rarity and occurrence during geomagnetically quiet times. J Geophys Res 101(A11):24–755. https://doi.org/10.1029/96JA02540

    Article  Google Scholar 

  6. Dai L et al (2013) Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys Res Lett 40(16):4127–4132. https://doi.org/10.1002/grl.50800

    Article  ADS  Google Scholar 

  7. Dai L et al (2015) Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: a Van Allen Probes statistical study. J Geophys Res 120(6):4748–4762. https://doi.org/10.1002/2015JA021134

    Article  Google Scholar 

  8. Darrouzet F, de Keyser J, Pierrard V (2009) The Earth’s plasmasphere: a CLUSTER and IMAGE perspective. Springer Science & Business Media

    Google Scholar 

  9. Degeling A, Rae I, Watt C, Shi Q, Rankin R, Zong Q-G (2018) Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density. J Geophys Res 123: https://doi.org/10.1002/2017JA024874

    ADS  Google Scholar 

  10. Foster J, Wygant J, Hudson M, Boyd A, Baker D, Erickson P, Spence HE (2015) Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J Geophys Res 120(3):1661–1674. https://doi.org/10.1002/2014JA020642

    Article  Google Scholar 

  11. Fraser B, Nguyen T (2001) Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J Atmos Terr Phys 63(11):1225–1247. https://doi.org/10.1016/S1364-6826(00)00225-X

    Article  ADS  Google Scholar 

  12. Hao Y et al (2017) Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: boomerang-shaped pitch angle evolutions. Geophys Res Lett 44(15):7618–7627

    Article  ADS  Google Scholar 

  13. Horwitz J, Comfort R, Chappell C (1984) Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys Res Lett 11(8):701–704. https://doi.org/10.1029/GL011i008p00701

    Article  ADS  Google Scholar 

  14. Lee D-H (1996) Dynamics of MHD wave propagation in the low-latitude magnetosphere. J Geophys Res 101(A7):15371–15386

    Article  ADS  Google Scholar 

  15. Li W et al (2009) Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys Res Lett 36(9). https://doi.org/10.1029/2009GL037595

  16. Li X, Hudson M, Chan A, Roth I (1993) Loss of ring current O+ ions due to interaction with Pc 5 waves. J Geophys Res 98(A1):215–231. https://doi.org/10.1029/92JA01540

    Article  ADS  Google Scholar 

  17. Liu W et al (2013) Poloidal ULF wave observed in the plasmasphere boundary layer. J Geophys Res 118(7):4298–4307. https://doi.org/10.1002/jgra.50427

    Article  Google Scholar 

  18. Malaspina DM, Jaynes AN, Boulé C, Bortnik J, Thaller SA, Ergun RE, Kletzing CA, Wygant JR (2016) The distribution of plasmaspheric hiss wave power with respect to plasmapause location. Geophys Res Lett 43(15):7878–7886. https://doi.org/10.1002/2016GL069982

    Article  ADS  Google Scholar 

  19. Mann IR et al (2013) Discovery of the action of a geophysical synchrotron in the Earths Van Allen radiation belts. Nat Commun 4: https://doi.org/10.1038/ncomms3795

  20. Moldwin MB, Downward L, Rassoul H, Amin R, Anderson R (2002) A new model of the location of the plasmapause: CRRES results. J Geophys Res 107(A11):

    Google Scholar 

  21. Pokhotelov D, Rae I, Murphy K, Mann I (2016) Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm. J Geophys Res 121:11766–11779. https://doi.org/10.1002/2016JA023130

    Article  Google Scholar 

  22. Ren J et al (2017) Low-energy (\(<200\) eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation. J Geophys Res 122(10):9969–9982. https://doi.org/10.1002/2017JA024316

    ADS  Google Scholar 

  23. Ren J, Zong QG, Wang YF, Zhou XZ (2015) The interaction between ULF waves and thermal plasma ions at the plasmaspheric boundary layer during substorm activity. J Geophys Res 120(2):1133–1143. https://doi.org/10.1002/2014JA020766

    Article  Google Scholar 

  24. Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF (2016) Interaction of ULF waves with different ion species: pitch angle and phase space density implications. J Geophys Res 121(10):9459–9472. https://doi.org/10.1002/2016JA022995

    Article  Google Scholar 

  25. Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF, Gu SJ, Zhu YF (2017) Phase relationship between ULF waves and drift-bounce resonant ions: a statistical study. J Geophys Res 122(7):7087–7096. https://doi.org/10.1002/2016JA023848

    Article  Google Scholar 

  26. Ren J, Zong Q, Miyoshi Y, Rankin R, Spence H, Funsten H, Wygant J, Kletzing CA (2018) A comparative study of ULF waves’ role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation. J Geophys Res 123(7):5334–5343. https://doi.org/10.1029/2018JA025255

    Article  Google Scholar 

  27. Takahashi K, McEntire R, Lui A, Potemra T (1990) Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation. J Geophys Res 95(A4):3717–3731. https://doi.org/10.1029/JA095iA04p03717

    Article  ADS  Google Scholar 

  28. Walsh B, Foster J, Erickson P, Sibeck D (2014) Simultaneous ground-and space-based observations of the plasmaspheric plume and reconnection. Science 343(6175):1122–1125

    Article  ADS  Google Scholar 

  29. Walsh B, Phan T, Sibeck D, Souza V (2014) The plasmaspheric plume and magnetopause reconnection. Geophys Res Lett 41(2):223–228. https://doi.org/10.1002/2013GL058802

    Article  ADS  Google Scholar 

  30. Yang B et al (2011) Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves. J Geophys Res 116:A03207. https://doi.org/10.1029/2010JA016047

    Article  ADS  Google Scholar 

  31. Yang B, Zong Q-G, Fu SY, Li X, Korth A, Fu HS, Yue C, Reme H (2011) The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J Geophys Res 116: https://doi.org/10.1029/2010JA015683

    Article  Google Scholar 

  32. Yue C et al (2016) Rapid enhancement of low-energy (\(<\)100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms. J Geophys Res 121(7):6430–6443. https://doi.org/10.1002/2016JA022808

    ADS  Google Scholar 

  33. Zhu X, Kivelson MG (1989) Global mode ULF pulsations in a magnetosphere with a nonmonotonic Alfvén velocity profile. J Geophys Res 94(A2):1479–1485

    Article  ADS  Google Scholar 

  34. Zong Q-G et al (2007) Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett 34(12):105–+. https://doi.org/10.1029/2007GL029915

  35. Zong Q-G et al (2009) Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res 114(A10):204. https://doi.org/10.1029/2009JA014,393

    Article  Google Scholar 

  36. Zong Q-G, Wang YF, Zhang H, Fu SY, Zhang H, Wang CR, Yuan CJ, Vogiatzis I (2012) Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J Geophys Res 117(A11):206. https://doi.org/10.1029/2012JA018,024

    Article  Google Scholar 

  37. Zong Q, Rankin R, Zhou X (2017) The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earths magnetosphere. Rev Mod Plasma Phys 1(1):10

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, J. (2019). Interactions Between ULF Waves and Cold Plasmaspheric Particles. In: ULF Waves’ Interaction with Cold and Thermal Particles in the Inner Magnetosphere. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9378-6_3

Download citation

Publish with us

Policies and ethics