Skip to main content

Nanotechnology: A Novel Strategy Against Plant Pathogens

  • Chapter
  • First Online:

Abstract

To augment the nutritional values and yields for which agricultural sector come across various problem, solution to this can be provided by narrative and enhanced strategies unrehearsed by nanotechnology. To recover the safety of agricultural products as well as diminish the pollution, new Nano technological techniques with controlled delivery of pesticides, herbicides and fertilizers could be functional. Important aspects in novel agriculture include development of nanodevices such as smart delivery systems to target specific sites and also nanocarriers for chemical controlled release. Agricultural production can be revolutionized using nanotechnology involving on-farm applications to deliver drugs or pesticides to livestock or crops and smart-sensing devices for agriculture-environment interactions. This study emphasizes upon bionanotechnology awareness in agriculture which is an emergent field having enormous prospective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas SS, Haneef M, Lohani M, Tabassum H, Khan AF (2016) Nanomaterials used as a plants growth enhancer: an update. Int J Pharm Sci Rev Res 5:17–23

    CAS  Google Scholar 

  • Abd-Elsalam KA (2012) Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol 2:e107

    Article  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Alfadul SM, Altahir OS, Khan M (2017) Application of nanotechnology in the field of food production. Acad J Sci Res 5(7):143–154

    Google Scholar 

  • Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Public 2(4):1–4

    Google Scholar 

  • Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117

    Article  CAS  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64:120–127

    Google Scholar 

  • Banik G, Brückle I, Daniels V, Fischer S, Keller SW, Kosek JM, Lacher R, Smith AW, Vendl A, Wegele G, Whitmore PM (2011) Paper and water: a guide for conservators. Butterworth-Heinemann, Oxford, pp 419–436

    Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4:345–357

    CAS  Google Scholar 

  • Bhati A, Tripathi KM, Singh A, Sarkar S, Sonkar SK (2018) Exploration of nano carbons in relevance to plant systems. New J Chem 42(20):16411–16427

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2:21–36

    Google Scholar 

  • Bousset L, Chèvre AM (2012) Controlling cyclic epidemics on the crops of the agroecosystems: articulate all the dimensions in the formalisation, but look for a local solution. J Bot 2012

    Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. The electrochemical society, Meetings abstract (No. 40: 2278–2278)

    Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen L, Wang C, Li H, Qu X, Yang ST, Chang XL (2017) Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ Sci Technol 51(17):10146–10153

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  PubMed  CAS  Google Scholar 

  • Eltarahony M, Zaki S, ElKady M, Abd-El-Haleem D (2018) Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. J Nanomater, 2018

    Google Scholar 

  • Fang Y, Ramasamy R (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Garg J, Poudel B, Chiesa M (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301

    Article  CAS  Google Scholar 

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulationsa safer and effective option for agrochemicals. Indian Farm 59(8):7–12

    Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, New York

    Book  Google Scholar 

  • Guarino L, Lobell DB (2011) A walk on the wild side. Nat Clim Chang 1:374–375

    Article  Google Scholar 

  • Hengl T, de Jesus JM, Mac Millan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JG, Walsh MG, Gonzalez MR (2014) Soil Grids1km – global soil information based on automated mapping. PLoS One 9:e105992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoboken NJ, Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74(1):328–335

    Article  CAS  Google Scholar 

  • Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H (2018a) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nano 8(2):102

    Google Scholar 

  • Huang C, Xia T, Niu J, Yang Y, Lin S, Wang X, Yang G, Mao L, Xing B (2018b) Transformation of 14C-labeled graphene to 14CO2 in the shoots of rice plant. Angew Chem Int Ed 57(31):9759–9763

    Article  CAS  Google Scholar 

  • Hussain T (2017) Nanotechnology: diagnosis of plant diseases. Agri Res Tech 10(1):1–2

    Google Scholar 

  • Hu Z, Zhang D, Yu L, Huang Y (2018) Light-triggered C 60 release from a graphene/cyclodextrin nanoplatform for the protection of cytotoxicity induced by nitric oxide. J Mater Chem B 6(3):518–526

    Article  CAS  PubMed  Google Scholar 

  • Ismail WA, Ali ZA, Puteh R (2013) Transparent nanocrystallite silver for antibacterial coating. J Nanomater 2013:54. https://dl.acm.org/citation.cfm?id=2514162

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 81(2):430–433

    Article  PubMed  CAS  Google Scholar 

  • Jampílek J, Kráľová K (2017) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Nanotechnology, pp 177–226

    Chapter  Google Scholar 

  • Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2018) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric 98(8):3148–3160

    PubMed  CAS  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423

    Article  PubMed  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Koedrith P, Thasiphu T, Tuitemwong K, Boonprasert R, Tuitemwong P (2014) Recent advances in potential nanoparticles and nanotechnology for sensing food-borne pathogens and their toxins in foods and crops: current technologies and limitations. Sensors Mat 26(10):711–736

    Google Scholar 

  • Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribus Man Rev 16(2):21–42

    Google Scholar 

  • Mahendra R, Shivaji D, Aniket G, Kamel-Abd-Elsalam (2012) Strategic nanoparticle-mediated gene transfer in plants and animals – a novel approach. Curr Nanosci 8:170–179

    Article  Google Scholar 

  • Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400

    Article  PubMed  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  PubMed  CAS  Google Scholar 

  • Manimaran M (2015) A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res 5:13–15

    CAS  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  • Mansoori GA (2005) Principles of nanotechnology—molecular based study of condensed matter in small systems. World Scientific Pub. Co, Singapore

    Book  Google Scholar 

  • Mehrazar E, Rahaie M, Rahaie S (2015) Application of nanoparticles for pesticides, herbicides, fertilisers and animals feed management. Int J Nanopart 8(1):1–19

    Article  CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolarissorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell L (2001) Issues in food security. Agric Inform Bull Num 2001:765–811

    Google Scholar 

  • Montalvo D, McLaughlin MJ, Degryse F (2015) Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in Andisols and Oxisols. Soil Sci Soc Am J 79:551–558

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Pagano L, Maestri E, White JC, Marmiroli N, Marmiroli M (2018) Quantum dots exposure in plants: minimizing the adverse response. Curr Opin Environ Sci Health 6:71–76

    Article  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, India, pp 289–300

    Chapter  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson DKR, Zadrazilova GS (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working Paper Version, p. 285–297

    Google Scholar 

  • Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112A

    Article  PubMed  CAS  Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH (2010) Nanotechnology patents as R&D indicators for disease management strategies in agriculture. J Intellect Property Rights 15:197–205

    Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537

    Article  Google Scholar 

  • Savary S, Teng PS, Willocquet L, Nutter FW Jr (2006) Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol 44:89–112

    Article  PubMed  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul RK (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4:1–5

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorus nanoparticles from tri-calcium phosphate using Aspergillustubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tripathi M, Kumar S, Kumar A, Tripathi P, Kumar S (2018) Agro-nanotechnology: a future Technology for Sustainable Agriculture. Int J Curr Microbiol App Sci 7:196–200

    Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  PubMed  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Panikar KM, Balasubrahmanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillusflavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yu L, Kong X, Sun L (2017) Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine 12:4789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YA, Li JJ, Chen HY, Peng XG (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124:2293–2298

    Article  PubMed  CAS  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 02:40–44. 18

    Google Scholar 

  • Warad H, Dutta J (2007) Nanotechnology for agriculture and food systems-a review. In: RaoKhadpekar N (ed) The age of nanotechnology. The ICFAI University Press, India

    Google Scholar 

  • Young M, Debbie W, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Sharma, J., Dhuriya, Y.K. (2019). Nanotechnology: A Novel Strategy Against Plant Pathogens. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_9

Download citation

Publish with us

Policies and ethics