Skip to main content

Mechanism of Action of Nanopesticide Derived from Microorganism for the Alleviation of Abiotic and Biotic Stress Affecting Crop Productivity

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Rise in the human population, damage of arable land, resistance of pest and diseases, decline inaccessibility of water for agriculture and climate changes are the major coercions to an improvement of food production worldwide. In order to mitigate these global challenges, there is a need to provide a sustainable, green, clean and safe food to mankind by utilization of green technologies. Leveraging on the advantages of nanomaterial that includes tolerance to environmental stresses, stimulation of seed germination, seed protection, targeted delivery of pesticides, prevention of pest and disease, as well as greater yield and biomass improvement of agricultural crops substantiates their application in sustainable agriculture. Also, the recent advancement, development, and commercialization of bio-nanopesticides have singled them out as a permanent replacement to chemical pesticides because of their broad-spectrum pest protection effectiveness. We review different studies and examine the mechanism of actions utilized by nanopesticides for the management of abiotic and biotic stress for improved food security and enhanced agricultural output toward the delivery of nontoxic food, environmental persistence, and an eco-friendly and healthy planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Ghany TM, Shater ARM, Al Abboud AM, Alawlaqi MM (2013) Silver nanoparticles biosynthesis by Fusarium moniliforme and their antimicrobial activity against some food-borne bacteria. Mycopathologia 11(1):1–7

    Google Scholar 

  • Aguilar-M_endez MA, San Mart_ın-Mart_ınez E, Ortega-Arroyo L, Cobian-Portillo G, Sanchez-Esp_ındola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra−/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ahmad RS, Sara M, Hamid RS, Hossein J, Ashraf-Asadat N (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Kumar S (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Fareed M (2012) Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci 37:139–148

    Article  PubMed  CAS  Google Scholar 

  • Baghbani-Arani F, Movagharnia R, Sharifian A (2017) Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. J Photochem Photobiol B Biol 138:640–649

    Article  CAS  Google Scholar 

  • Balaji SD, Basavaraja S, Deshpande R, Mahesh BD, Prabhakar KB, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B: Biointerfaces 68:88–92

    Article  PubMed  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009a) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2007) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Bazylinski AB, Frankel BR (2004) Magnetosome formation in Prokaryotes. Nat Rev– Microbiol 2:213–230

    Article  CAS  Google Scholar 

  • Begum P, khtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B; Biointerfaces 47:160–164

    Article  PubMed  CAS  Google Scholar 

  • Bhupinder SS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27(8):085103

    Article  PubMed  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Michel HA, Larue C, Pradas del Real AE, Cotte M, Sarret G (2017) Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32

    Article  PubMed  CAS  Google Scholar 

  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A (2010) Nanosulfur: a potent fungicide against food pathogen. Aspergillus Niger AIP Conf Proc 1276:1541–1557

    Google Scholar 

  • Connor EE, Mwamuka J, Gole A (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49

    Article  PubMed  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Young-Ki JO (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in Bermudagrass. J Nematol 46(3):261–266

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cui L, Chen P, Chen S, Yuan Z, Yu C, Ren B, Zhang K (2013) In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem 85(11):5436–5443

    Article  PubMed  CAS  Google Scholar 

  • Dibrov P, Dzioba J, Gosink K, Hase C (2002) Chemiosmotic mechanism of antimicrobial activity of Ag? In Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Article  Google Scholar 

  • Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surfaces B 74:304–308

    Article  CAS  Google Scholar 

  • Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  PubMed  CAS  Google Scholar 

  • Fu JK, Liu YY, Fu JY, Li XQ, Gu PY, Chen P (2000) Preparation of supported palladium catalyst by biochemical method. J Xiamen Univ Nat Sci 39:67–71

    CAS  Google Scholar 

  • Fu PP, Xia Q, Hwang RPC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  PubMed  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  • Griffitt RJ, Luo J, Gao J (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  PubMed  CAS  Google Scholar 

  • Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash PC, Fraceto LF, de Lima R (2017) Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive-X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147

    Article  PubMed  CAS  Google Scholar 

  • Holt K, Bard A (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar ag. Biochemistry 44:13214–13223

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114

    Article  CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Anuradha R (2017) Eco-friendly fabrication of ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J Photochem Photobiol B Biol 174:133–143

    Article  CAS  Google Scholar 

  • Joanna C, Marcin L, Ewa K, Grażyna P (2018) A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology 27(3):352–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung W, Koo H, Kim K, Shin S, Kim S, Park Y (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpndian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B: Biointerfaces 71:133–137

    Article  PubMed  CAS  Google Scholar 

  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644

    Article  PubMed  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  PubMed  CAS  Google Scholar 

  • Lengke FM, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria a from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  PubMed  CAS  Google Scholar 

  • Li L, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OM, Jung G, Xing B (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology 28(15):1–10

    Google Scholar 

  • Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Maggy FL, Michael EF, Gordon S (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  Google Scholar 

  • Margarita S (2011) Pesticides formulations, effects, fate. InTech Janeza Trdine 9, 51000 Rijeka, Croatia

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Safe 108:335–339

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 7:9275–9280

    Google Scholar 

  • Mokhtari M, Deneshpojouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi RH, Shahverdi RA (2009) Biological synthesis of nanoparticles by culture supernatant of Klebsiella pneumonia. The effects of visible-irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Article  CAS  Google Scholar 

  • Morones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramirez J, Yacaman M (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam Naqvi A (2010) A production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  PubMed  CAS  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of nanoparticles on soybean under flooding stress. J Proteome 122:100–118

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of crystallites assisted by Lactobacillus strains. Crystal Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nair PMGIII, Chung M (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Madler L (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by y-irradiation and their antibacterial and antifungal efficiency against salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surfaces A 275:228–233

    Article  CAS  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Ozel RE, Alkasir RS, Ray K (2013) Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. Small 9:4250–4261

    Article  PubMed  CAS  Google Scholar 

  • Pan acek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Park S, Ahn YJ (2016) Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). Biocatal Agric Biotechnol 8:257–262

    Article  Google Scholar 

  • Perlatti B, de Souza Bergo PL, da Silva MF (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals, insecticides. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka, pp 523–550

    Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  PubMed Central  CAS  Google Scholar 

  • Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci Nanosci Nanotechnol 7(4):1–12

    Article  CAS  Google Scholar 

  • Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in photosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Iqbal HMN, Li C (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B Biointerfaces 158:408–415

    Article  PubMed  CAS  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JP, Gardea-Torresdey LJ (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  PubMed  CAS  Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska I, Polowczyk I, Kozlecki T, Grochowalska B (2008) Biosynthesis of colloidal-silver particles using microorganisms, Polish J. Chemistry 82:377–382

    CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Berlin, pp 1–39

    Google Scholar 

  • Shahverdi RA, Minaeian S, Shahverdi RH, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Shirley A, Dayananda B, Sreedhar B, Syed G, Dastager CC (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig J Nanomater Biostruct 5(2):447–451

    Google Scholar 

  • Shiying H, Zhirui G, Yu Z, Song Z, Jing W, Ning G (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7(22):1–17

    Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  PubMed  CAS  Google Scholar 

  • Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  PubMed  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  PubMed  CAS  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  PubMed  CAS  Google Scholar 

  • Tripathi DK, Shweta SS, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Nawal KD, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171(13):1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Lu W, Tovmachenko O (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Aker WG, Hwang HM (2011a) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J (2011b) Toxicity and internalization of CuO nanoparticles to prokaryotic algae Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404–412

    Article  PubMed  CAS  Google Scholar 

  • Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145:523–531

    Article  PubMed  CAS  Google Scholar 

  • Winnik FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46:672–680

    Article  PubMed  CAS  Google Scholar 

  • Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Shen C, Ji, Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20

    Google Scholar 

  • Yin JJ, Liu J, Ehrenshaft M (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes e generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18:1–8

    Google Scholar 

  • Zhu X, Hondroulis E, Liu W et al (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9:1821–1830

    Article  PubMed  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O., Ugbenyen, M.A. (2019). Mechanism of Action of Nanopesticide Derived from Microorganism for the Alleviation of Abiotic and Biotic Stress Affecting Crop Productivity. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_7

Download citation

Publish with us

Policies and ethics