Skip to main content

Nanoelements: An Agricultural Paradigm for Targeted Plant Nutrition Therapeutic Approach

  • Chapter
  • First Online:

Abstract

The nutrients required for good health, longevity, and well-being come from the different complex food system. The constant growth of the world population increased the demand for better technologies to enhance the agricultural yields, production of healthier food, and combat with pathogens to reduce the damage. In medical fields, nanotechnology shows promising therapeutic effects as it overcomes the biological barriers and improves the targeting of the diseased tissues, while application of nanotechnology in agricultural fields has received little attention in contrast to the human health system. Phyto-nanotechnology has tremendous potential to alter the plant production by allowing the target-specific delivery of nutrients and biomolecules, and it also allows the controlled release of fertilizers, herbicides, and pesticides to reduce environmental damage. A better understanding of the relationship between plants response and nanoparticles may improve the uptake of agricultural elements which is essential to increase the agricultural yields and disease resistance of plants while reducing the biotic stress. Maintaining the optimum requirement of nutrition to sustain plant production is the major research area of agronomy field, and nano-nutrition is a remarkable area for sustainable plant production by using nano-elements. Using this technology, we can maintain the need for micro and macronutrients in the plants. Confront studies have reported that nanomaterial and nanoparticles are better suited for plant nutrition in contrast to nano-fertilizers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arora S, Sharma P, Kumar S et al (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Bacon J (2014) Third day is the charm: Toledo can drink its water. USA Today

    Google Scholar 

  • Bao-shan L, Shao-qi D, Chun-hui L et al (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J Forest Res 15:138–140

    Article  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica: from medicine to pest control. Parasitol Res 103:253–258

    Article  PubMed  CAS  Google Scholar 

  • Barrena R, Casals E, Colón J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  PubMed  CAS  Google Scholar 

  • Brackhage C, Schaller J, Bäucker E et al (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. SILICON 5:199–204

    Article  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production and plant product quality. Trends Plant Sci 20:33–40

    Article  PubMed  CAS  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Das S, Bhattacharya A, Debnath N et al (2013) Nanoparticle-induced morphological transition of Bombyx mori nucleopolyhedrovirus: a novel method to treat silkworm grasserie disease. Appl Microbiol Biotechnol 97:6019–6030

    Article  PubMed  CAS  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N et al (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94

    Article  PubMed  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122

    Google Scholar 

  • Dubrovsky NM, Hamilton PA (2010) Nutrients in the nation’s streams and groundwater: national findings and implications. U.S. Geological Survey Fact Sheet 2010–3078, p 6

    Google Scholar 

  • Duran N, Duran M, de Jesus MB, Seabra AB, Favaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on me-chanistic aspects on antimicrobial activity. Nanomed Na-notechnol Biol Med 12:789–799

    Article  CAS  Google Scholar 

  • Fageria NK (2009) Use of nutrients in crop plants. CRC Pres, Boca Raton

    Google Scholar 

  • Gericke WF (1937) Hydroponics—crop production in liquid culture media. Science 85(2198):177–178

    Article  CAS  PubMed  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    PubMed  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser Y, Eizenberg H, Golan S et al (2003) Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Protect 22:295–305

    Article  Google Scholar 

  • Goswami A, Roy I, Sengupta S et al (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H et al (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32

    Google Scholar 

  • Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41and its catalytic effect on hydrolysis of urea. Colloids Surf B Biointerfaces 62:42–50

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Wu Y, Li X et al (2018) Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 193:852–860

    Article  PubMed  CAS  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT et al (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201–207

    Article  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F et al (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 696535

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    Article  PubMed  CAS  Google Scholar 

  • McGrath JM, Spargo J, Penn CJ (2014) Soil fertility and plant nutrition: encyclopedia of agriculture and food systems, vol 5. Elsevier, San Diego, pp 166–184

    Book  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. Emerg Technol Manage Crop Stress Toler 1:159–180

    Article  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles - the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina TM, Behal A et al (2017) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manage 9:76–84

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  PubMed  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K et al (2014) Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473

    CAS  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L et al (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33

    Article  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timisoara ser Biol XVI 2:73–78

    Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill). Saudi Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  • Singh MD, Gautam C, Patidar OP et al (2017) Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9:3831–3833

    CAS  Google Scholar 

  • Sirisena DN, Dissanayake DMN, Somaweera KATN et al (2013) Use of Nano-K fertilizer as a source of potassium in rice cultivation. Ann Sri Lanka Dept Agric 15:257–262

    Google Scholar 

  • Sohair EED, Abdall AA, Amany AM et al (2018) Evaluation of nitrogen, phosphorus and potassium Nano-fertilizers on yield, yield components and Fiber properties of Egyptian cotton (Gossypium Barbadense L.). J Plant Sci Crop Protec 1:208

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H et al (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet(Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Vigani G, Zocchi G, Bashir K et al (2013) Cellular iron homeostasis and metabolism in plant. Front Plant Sci 4:490

    PubMed  PubMed Central  Google Scholar 

  • Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water-retention. Carbohydr Polym 72:240–247

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG et al (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a green house trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  PubMed  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F et al (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Dhuriya, Y.K., Sharma, J., Gupta, M. (2019). Nanoelements: An Agricultural Paradigm for Targeted Plant Nutrition Therapeutic Approach. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_4

Download citation

Publish with us

Policies and ethics