Skip to main content

Application of Nanoengineered Metabolites from Beneficial and Eco-friendly Microorganisms as a Biological Control Agents for Plant Pests and Pathogens

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

Pest and pathogens have been highlighted as major constraints affecting the increase in agricultural productivity globally. This has led to the superfluous usage of toxic and harmful pesticides, which is not eco-friendly, imposing a lot of hazardous effects on animal and plant and causing severe health complications for farmers. The persistent use of pesticides has led not only to pest and disease resistance but also to bioaccumulation and biomagnification of toxic chemicals, decreasing soil fertility and leading to environmental pollution and health hazards. Alleviating the effects of the long-term usage of chemical pesticides remains one of the utmost challenges for achieving sustainable agriculture. Therefore, to attain sustainable goals, which include nontoxic environment, food safety, healthy lives, and sustainable agriculture, there is an urgent need to search for an alternative for the management of these pests and pathogens. Therefore, the application of nanoengineered metabolites from beneficial and eco-friendly microorganisms could be an alternative. In view of the aforementioned, this chapter anticipates to report the past and current trends in the application of nanobiotechnology for effective production of nanopesticides using biologically active metabolites from eco-friendly and beneficial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Pella D, Freund DM, Ma Y, Simon-Manso Y, Hollender J, Broeckling CD, Huhman DV, Krokhin OV, Stoll DR, Hegeman AD et al (2015) Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. J Chromatogr A 18:43–51

    Article  CAS  Google Scholar 

  • Acosta EJ, Gonzalez SO, Simanek EE (2005) Synthesis, characterization, and application of melamine based dendrimers supported on silica gel. J Polym Sci Polym Chem 43:168–177. https://doi.org/10.1002/pola.20493

    Article  CAS  Google Scholar 

  • Adetunji CO, Sarin NB (2017) Impacts of biogenic nanoparticle on the biological control of plant pathogens. Adv Biotechnol Microbiol 7(3):555711. https://doi.org/10.19080/AIBM.2017.07.555711

    Article  Google Scholar 

  • Adetunji CO, Oloke JK, Mishra P, Oluyori AP, Jolly RS, Bello OM (2018) Mellein, a dihydroisocoumarin with bioherbicidal activity from a new strain of Lasiodiplodia pseudotheobromae C1136. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1016/j.bjbas.2018.06.001

    Article  Google Scholar 

  • Adetunji CO, Phazang P, Sarin NB (2018) Fast-growing technology for pathogen detection in agriculture and food sector, biosensing technologies for the detection of pathogens Toonika Rinken, IntechOpen. https://doi.org/10.5772/intechopen.74668. Available from: https://www.intechopen.com/books/biosensing-technologies-for-the-detection-of-pathogens-a-prospective-way-for-rapid-analysis/biosensors-a-fast-growing-technology-for-pathogen-detection-in-agriculture-and-food-sector. ISBN:978-953-51-3916-4, Print ISBN:978-953-51-3915-7

    Chapter  Google Scholar 

  • Adt I, Toubas D, Pinon JM, Manfait M, Sockalingum GD (2006) FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans. Arch Microbiol 185:277–285

    Article  PubMed  CAS  Google Scholar 

  • Al-othman MR, Ab del-aziza RM, Mahmoudb MA, Eifana SA, El-shikha MS, Majrashic M (2014) Application of silver nanoparticles as antifungal and antiaflatoxin B1 produced by Aspergillus flavus. Dig J Nanomater Biostruct 9(1):151–157

    Google Scholar 

  • Ananias D, Paz FA, Carlos LD, Rocha J (2013) Chiral microporous rare-earth silico-germanates: synthesis, structure and photoluminescence properties. Microporous Mesoporous Mater 166:50–58. https://doi.org/10.1016/j.micromeso.2012.04.032

    Article  CAS  Google Scholar 

  • Baker D, Mocek U, Garr C (2000) Natural products vs. combinatorials: a case study. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 66–72

    Google Scholar 

  • Bello OM, Zaki AA, Khan IS, Fasinu PS, Ali Z, Khan IA, Usman LA, Oguntoye OS (2017) Assessment of selected medicinal plants indigenous to West Africa for antiprotozoal activity. S Afr J Bot 113:200–211. https://doi.org/10.1016/jsajb.2017.08.002

    Article  Google Scholar 

  • Bello OM, Ibitoye T, Adetunji C (2018) Assessing antimicrobial agents of Nigeria flora. J King Saud Univ – Sci. https://doi.org/10.1016/j.jksus.2018.04.017. in press

    Article  Google Scholar 

  • Beveridge JT, Hughes MN, Lee H et al (1997) Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38:178–243

    Google Scholar 

  • Bhargavaa A, Jaina N, Gangopadhyayb S, Panwara J (2015) Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochem 50:1293–1300

    Article  CAS  Google Scholar 

  • Bhaskar B, Ahammed SK, Prasad TNVKV (2014) Characterization and evaluation of mycogenic silver nanoparticles synthesized from Trichoderma sp. against collar rot disease in groundnut. M.Sc(Ag) thesis, Acharya NG Ranga Agricultural University, Andhra Pradesh, India

    Google Scholar 

  • Bhushan B, Marti O (2004) Scanning probe microscopy—principle of operation, instrumentation, and probes. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin, pp 325–369

    Google Scholar 

  • Bothwell JH, Griffin JL (2011) An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc 86:493–510

    Article  PubMed  Google Scholar 

  • Boughton BA, Callahan DL, Silva C, Bowne J, Nahid A, Rupasinghe T, Tull DL, McConville MJ, Bacic A, Roessner U (2011) Comprehensive profiling and quantitation of amine group containing metabolites. Anal Chem 83:7523–7530

    Article  PubMed  CAS  Google Scholar 

  • Cabral M, Pedrosa F, Margarido F, Nogueira CA (2013) End-of-life Zn-MnO2 batteries: electrode materials characterization. Environ Technol 34(9–12):1283–1295

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Techniques for the study of biological structure and function. In: Freeman WH (ed) Biophysical chemistry II. W. H. Freeman, San Francisco, p 441

    Google Scholar 

  • Cao G (2011) Nanostructures and nanomaterials: synthesis, properties, and applications. World Scientific Publishing Inc., Hackensack

    Book  Google Scholar 

  • Castillo-Peinado LS, Luquee de Castro MD (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–15

    Article  PubMed  CAS  Google Scholar 

  • Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U, Doak RB, Maia FR, Martin AV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Hömke A, Reich C, Pietschner D, Strüder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kühnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM, Andreasson J, Rocker A, Jönsson O, Svenda M, Stern S, Nass K, Andritschke R, Schröter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TR, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence JC (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Shi Q, Lin G, Guo S, Yang J (2009) Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J Nat Prod 72:1712–1715. https://doi.org/10.1021/np900302w

    Article  PubMed  CAS  Google Scholar 

  • Chitam H, Zhu N, Shang R et al (2016) Biorecovery of palladium as nanoparticles by Enterococcus faecalis and its catalysis for chromate reduction. Chem Eng J 288:246–254

    Article  CAS  Google Scholar 

  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C et al (2010) Nanosulfur: a potent fungicide against food Pathogen Aspergillus niger. In: Proceeding of AIP conference. 1276: 154–157

    Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  PubMed  CAS  Google Scholar 

  • Dada AO, Adekola FA, Odebunmi EO (2017a) Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent manganese (nZVMn): equilibrium, kinetic and thermodynamic studies. Environ Nanotechnol Monit Manag 8:63–72. https://doi.org/10.1016/j.enmm.2017.05.001

    Article  Google Scholar 

  • Dada AO, Adekola FA, Odebunmi EO (2017b) Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chem J 3:1–20. 1351653. https://doi.org/10.1080/23312009.2017.1351653

    Article  CAS  Google Scholar 

  • Dada AO, Adekola FA, Adeyemi OS, Bello MO, Adetunji CO, Awakan OJ, Femi-Adepoju GA (2018) Silver nanoparticles - fabrication, characterization and applications. exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles, silver nanoparticles - fabrication, characterization and applications, Khan Maaz, IntechOpen, https://doi.org/10.5772/intechopen.76947. Available from: https://www.intechopen.com/books/silver-nanoparticles-fabrication-characterization-and-applications/exploring-the-effect-of-operational-factors-andcharacterization-imperative-to-the-synthesis-of-silvInTechOpen

    Google Scholar 

  • Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee R (2009) Preparation of silver nanoparticles and their characterization. J Nanotechnol 5:1–6

    Google Scholar 

  • Das SK, Khan MR, Guhab AK, Naskar N (2013) Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem 15:2548–2557

    Article  CAS  Google Scholar 

  • Das SK, Parandhaman T, Pentela N et al (2014a) Understanding the biosynthesis and catalytic activity of Pd, Pt, and Ag nanoparticles in hydrogenation and Suzuki coupling reactions at the nano bio interface. J Phys Chem C 118:24623–24632

    Article  CAS  Google Scholar 

  • Das R, Ali E, Hamid SB (2014b) Current applications of X-ray powder diffraction – a review. Rev Adv Mater Sci 38:95–109

    CAS  Google Scholar 

  • David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–231

    Article  CAS  Google Scholar 

  • De Viguerie L, Sole VA, Walter P (2009) Multilayer quantitative X-ray fluorescence analysis applied to easel paintings. Anal Bioanal Chem 395(7):2015–2020. https://doi.org/10.1007/s00216-009-2997-0

    Article  PubMed  CAS  Google Scholar 

  • Demathieu C, Chehimi MM, Lipskier JF, Caminade AM, Majoral JP (1999) Characterization of dendrimers by X-ray photoelectron spectroscopy. Appl Spectrosc 53:1277–1281. https://doi.org/10.1366/0003702991945524

    Article  CAS  Google Scholar 

  • Desimoni E, Brunetti B (2015) X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3:70. https://doi.org/10.3390/chemosensors3020070

    Article  CAS  Google Scholar 

  • Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2009) Characterization of microplasma sprayed hydroxyapatite coating. J Therm Spray Technol 18:578–592. https://doi.org/10.1007/s11666-009-9386-2

    Article  CAS  Google Scholar 

  • Dias DA, Oliver AH, Jones DJ, Beale BA, Boughton DB, Konstantinos AK, Jean-Luc W, David SW (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Meta 6:46. https://doi.org/10.3390/metabo6040046

    Article  CAS  Google Scholar 

  • Elamawi RM, Al-Harbi RE (2014) Effect of biosynthesized silver nanoparticles on fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. J Plant Prot Path Mansoura Univ 5(2):225–237

    Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28. https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  • El-Eraky-Amal MI, Moubasher AH, Ismail MA, El- Shaer AH, Gouda HA (2017) Mycosynthesis of silver nanoparticles and their role in the control of Fusarium wilt of pepper. J Basic Appl Mycol 8:25–34

    Google Scholar 

  • Eugster PJ, Boccard J, Debrus B, Breant L, Wolfender JL, Martel S, Carrupt PA (2014) Retention time prediction for dereplication of natural products (CXHYOZ) in LC-MS metabolite profiling. Phytochemistry 108:196–207

    Article  PubMed  CAS  Google Scholar 

  • Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, Gresenz CR, FitzGerald KT, Nalls MA, Singleton AB (2015) Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer’s disease. Front Neurol 12:237

    Google Scholar 

  • Fierascu RC, Bunghez IR, Somoghi R, Fierascu I, Ion RM (2014) Characterization of silver nanoparticles obtained by using Rosmarinus officinalis extract and their antioxidant activity. Rev Roum Chim 59(3–4):213–218

    Google Scholar 

  • Filice M, Marciello M, Morales MP, Palomo JM (2013) Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem Commun 49:6876–6878

    Article  CAS  Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z et al (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50:1076–1085

    Article  CAS  Google Scholar 

  • González-Domínguez R, Rupérez FJ, García-Barrera T, Barbas C, Gómez-Ariza JL (2016) Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 13:641–653

    Article  PubMed  CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A Mol Biomol Spectrosc 106:170–174. https://doi.org/10.1016/j.saa.2012.12.087

    Article  CAS  Google Scholar 

  • Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2:821–825

    Article  PubMed  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and their occurrence. J Nat Prod 69:509–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803

    Article  CAS  Google Scholar 

  • Hanssen K, Schuler B, Williams AJ, Demissie TB et al (2012a) A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. Angew Chem Int Edit 124:12404–12407

    Article  Google Scholar 

  • Hanssen K, Andersen JH, Stiberg T, Engh RA et al (2012b) Antitumoral and mechanistic studies of ianthelline isolated from the Arctic sponge Stryphnus fortis. Anticancer Res 32:4287–4297

    PubMed  CAS  Google Scholar 

  • Harrick NJ, Beckmann KH (1974) Internal reflection spectroscopy. In: Kane P, Larrabee G (eds) Characterization of solid surfaces. Springer, New York, pp 215–245

    Chapter  Google Scholar 

  • Heather LC, Wang X, West JA, Griffin JL (2013) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol 55:2–11

    Article  PubMed  CAS  Google Scholar 

  • Hind AR, Bhargava SK, McKinnon A (2001) At the solid/liquid interface: FTIR/ATR--the tool of choice. Adv Colloid Interf Sci 93(1–3):91–114

    Article  CAS  Google Scholar 

  • Hostettmann K, Marston A (2007) The search for new drugs from higher plants. Chimia 61:322–326

    Article  CAS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Review Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693

    Article  CAS  Google Scholar 

  • Inagaki S, Ghirlando R, Grisshammer R (2013) Biophysical characterization of membrane proteins in nanodiscs. Methods 59(3):287–300

    Article  PubMed  CAS  Google Scholar 

  • Ivanisevic I (2010) Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci 99(9):4005–4012

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  PubMed  CAS  Google Scholar 

  • Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus lam. Seed extract and its antibacterial activity. Ind Crop Prod 46:132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  • James LT (1998) Fundamentals of NMR. University of California, San Francisco

    Google Scholar 

  • John A, Alexanda S, Larry A (2014) Approaching a universal sample preparation method for XRF analysis of powder materials. International center for diffraction data. Adv X-ray Anal 44:368–370

    Google Scholar 

  • Jones OA, Hügel HM (2013) Bridging the gap: basic metabolomics methods for natural product chemistry. Methods Mol Biol 1055:245–266

    Article  PubMed  CAS  Google Scholar 

  • Joshi M, Bhattacharyya A (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fiber Text Res 33:304–317

    CAS  Google Scholar 

  • Joulain D, König WA (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E.B.-Verlag, Hamburg

    Google Scholar 

  • Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9:217–227

    Article  CAS  Google Scholar 

  • Kanchan K (2014) Mycosynthesis of silver nanoparticles (AgNPs) using Tricoderma species and its efficacy against plant pathogenic fungi. PhD thesis, 1–27

    Google Scholar 

  • Karthick RN (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959. https://doi.org/10.1016/S2221-1691(13)60006-4

    Article  CAS  Google Scholar 

  • Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform 8:105

    Article  CAS  Google Scholar 

  • Kind T, Wohlgemuth G, Lee do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn OF (2009) Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 15:10038–10048

    Article  CAS  Google Scholar 

  • Koh AL, Hu W, Wilson RJ, Wang SX, Sinclair R (2008) TEM analyses of synthetic anti-ferromagnetic (SAF) nanoparticles fabricated using different release layers. Ultramicroscopy 108(11):1490–1494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M et al (2005) GMD@CSB. DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • König WA (1992) Gas chromatographic Enatiomer separation with modified Cyclodextrins. Hüthig–Verlag, Heidelberg

    Google Scholar 

  • Kou T, Jin C, Zhang C, Sun J, Zhang Z (2012) Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Adv 2:12636–12643. https://doi.org/10.1039/c2ra21821f

    Article  CAS  Google Scholar 

  • Kumar S, Barth A (2010) Following enzyme activity with infrared spectroscopy. Sensors (Basel) 10(4):2626–2637

    Article  CAS  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogs. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Lange H (1995) Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part Part Syst Charact 12:148–157. https://doi.org/10.1002/ppsc.19950120307

    Article  CAS  Google Scholar 

  • Leung AB, Suh KI, Ansari RR (2006) Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt 45(10):2186–2190

    Article  PubMed  Google Scholar 

  • Lia D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrette AR, Mosley TH, Coresh J, Wruck LM, Knopman DS, Alonso A (2016) Plasma phospholipids and prevalence of mild cognitive impairment and/or dementia in the aric neurocognitive study (ARIC-NCS). Alzheimer Dement Diagn Assess Dis Monit 3:73–82

    Google Scholar 

  • Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    Article  PubMed  Google Scholar 

  • Lindon JC, Nicholson JK (2008) Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem 1:45–69

    Article  CAS  Google Scholar 

  • Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22:509–515

    Article  PubMed  CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26:151–159

    Article  CAS  Google Scholar 

  • Mavrocordatos D, Pronk W, Boiler M (2004) Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci Technol 50(12):9–18

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881. https://doi.org/10.1371/journal.pone.0097881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Singh BR, Naqvi AH, Singh, HB (2017) Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep 7, 45154; https://doi.org/10.1038/srep45154 (2017)

  • Moghaddam AB, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in-vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. https://doi.org/10.1093/toxsci/kfm240

    Article  PubMed  CAS  Google Scholar 

  • Namita S, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotech 2(1):112–121

    Google Scholar 

  • Nurrulhidayah AF, Che Man YB, Amin I, Arieff Salleh R, Farawahidah MY, Shuhaimi M, Khatib A (2015) FTIR-ATR spectroscopy based metabolite fingerprinting as a direct determination of butter adulterated with lard. Int J Food Prop 18:372–379

    Article  CAS  Google Scholar 

  • Ortega-Arroyo L, Martin-Martinez ES, Aguilar-Mendez MA, Cruz-Orea A, Hernandez- Perez I, Glorieux C (2013) Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch-Starke 65:814–821. https://doi.org/10.1002/star.201200255

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Volume 2: Functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Papaiah S, Goud STE, Prasad BS, Vemana K, Narasimha G (2014) Silver nanoparticles, a potential alternative to conventional anti-fungal agents to fungal pathogens affecting crop plants. Int J Nano Dimens 5(2):139–144

    Google Scholar 

  • Parot P, Dufrêne YF, Hinterdorfer P, Le Grimellec C, Navajas D, Pellequer JL, Scheuring S (2007) Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 20(6):418–431

    Article  PubMed  CAS  Google Scholar 

  • Pereira L, Mehboob F, Stams AJM et al (2015) Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol 35:114–128

    Article  PubMed  CAS  Google Scholar 

  • Picas L, Milhiet PE, Hernández-Borrell J (2012) Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 165(8):845–860

    Article  PubMed  CAS  Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11(13):1019–1031. https://doi.org/10.1080/17458080.2016.1184766

    Article  CAS  Google Scholar 

  • Priya M, Thangaraj M (2010) Isolation and molecular characterization of bioactive secondary metabolites from Callyspongia spp. associated fungi. Asian Pac J Trop Med 3(9):738–740. https://doi.org/10.1016/S1995-7645(10)60177-0

    Article  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against Filariasis and malaria vectors. Acta Trop 118:196–203. https://doi.org/10.1016/j.actatropica.2011.03.003

    Article  PubMed  CAS  Google Scholar 

  • Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E (2013) Metabolomics in toxicology and preclinical research. ALTEX 30:209–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Reading E, Munoz-Muriedas J, Roberts AD, Dear GJ, Robinson CV, Beaumont C (2016) Elucidation of drug metabolite structural isomers using molecular modeling coupled with ion mobility mass spectrometry. Anal Chem 88:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy S, Mukherjee T, Chakraborty S, Das TK (2013) Biosynthesis, characterisation & antifungal activity ofsilver nanoparticles synthesized by the fungus Aspergillusfoetidus MTCC8876. Dig J Nanomater Biostruct 8(1):197–205

    Google Scholar 

  • Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD (2007) A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29:99–108

    Article  PubMed  CAS  Google Scholar 

  • Sannomiya T, Hafner C, Voros J (2008) In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 8(10):3450–3455

    Article  PubMed  CAS  Google Scholar 

  • Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanoparticles. Article ID: 182320

    Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488

    Article  PubMed  CAS  Google Scholar 

  • Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410. https://doi.org/10.1021/jp9719873

    Article  CAS  Google Scholar 

  • Satishkumar G, Gobinath G, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishna S (2012) Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory action against human pathogens. Colloids Surf B Biointerfaces 95:235–240. https://doi.org/10.1016/j.colsurfb.2012.03.001

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Geranium leaf assisted biosynthesis of silver nanoparticles. Nat Mater 3(7):482–488

    Article  PubMed  CAS  Google Scholar 

  • Shanmugaiah V, Harikrishnan H, Al-Harbi NS, Shine K, Khaled JM, Balasubramanian N, Shyam-Kumar R (2015) Facile synthesis of silver nanoparticles using Streptomyces sp.VSMGT1014 and their antimicrobial efficiency. Dig J Nanomater Biostruct 10(1):179–187

    Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, vol 72, 7th edn. Wiley, Houston, pp 127–128

    Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic, New York

    Google Scholar 

  • Singh DK, Pandey DK, Yadav RR, Singh D (2013) A study of ZnO nanoparticles and ZnO-EG nanofluid. J Exp Nanosci 8:567–577. https://doi.org/10.1080/17458080.2011.602369

    Article  CAS  Google Scholar 

  • Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chande SS (2017) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 15(1):31–39. https://doi.org/10.1016/j.jgeb.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 5(22):11563–11568

    Article  PubMed  CAS  Google Scholar 

  • Stephan TS, Scott EM, Anil KP, Marina AD (2006) Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. In: Amiji MM (ed) Nanotechnology for cancer therapy. CRC, Boca Raton, pp 105–137

    Google Scholar 

  • Subhash SV (2017) Biosynthesis of silver nanoparticles (AgNPs) by using Trichoderma harzianum and its efficacy against soil borne plant pathogens of tomato. MSc thesis, pp 1–106

    Google Scholar 

  • Sunkar S, Nachiyar V (2012a) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus Cereus: a novel source in the benign synthesis. Glob J Med Res 12(2):43–49

    Google Scholar 

  • Sunkar S, Nachiyar CV (2012b) Endophytes: a prospective source of Enzyme Production. J Pure App Microbiol 6(2):859–867

    CAS  Google Scholar 

  • Sunkar S, Nahciyar V (2013a) Asian J Microbiol Biotechnol Environ Sci 15(3):495

    CAS  Google Scholar 

  • Sunkar S, Nahciyar V (2013b) Int J Pharma Pharm Sci 5(2):95

    CAS  Google Scholar 

  • Syed B, Rao CY, Nagendra-Prasad MN, Prasad A, Harini BP, Azmath P, Rakshith D, Satish S (2016) Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting Euphorbia hirta L. and their bactericidal potential. https://doi.org/10.1155/2016/9020239

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of function metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Guengerich FP (2010) Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome p450 oxidation products in tissue extracts. Anal Chem 82:7706–7712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonth P, Chaichit N (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623. https://doi.org/10.1021/np0701069

    Article  PubMed  CAS  Google Scholar 

  • Tomaszewska E, Soliwoda K, Kadziola K, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater:313081. https://doi.org/10.1155/2013/313081

    Article  CAS  Google Scholar 

  • UV/VIS/IR Spectroscopy Analysis of Nanoparticles (2012) Available online: http://50.87.149.212/sites/default/files/nanoComposix%20Guidelines%20for%20UV-vis%20Analysis.pdf. Accessed on 5 Mar 2016

  • Vanaja M, Rajeshkumar S, Paulkumar K et al (2013) Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv Appl Sci Res 4(3):50–55

    CAS  Google Scholar 

  • Vetchinkina EP, Loshchinina EA, Burov AM et al (2014) Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes. J Biotechnol 182–183:37–45

    Article  PubMed  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus. Colloids Surf B: Biointerfaces 53:55–59. https://doi.org/10.1016/j.colsurfb.2006.07.014

    Article  PubMed  CAS  Google Scholar 

  • Vigneswaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. https://doi.org/10.1016/j.matlet.2006.07.042

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D (2012) One step green synthesis of silver nano/micro particles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B: Biointerfaces 94:114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  • Waseda Y, Matsubara E, Shinoda K (2011) X-ray diffraction crystallography: introduction, examples and solved problems. Springer, Berlin

    Book  Google Scholar 

  • Williams DB, Carter CB (2009) The transmission electron microscope. Springer, New York

    Book  Google Scholar 

  • Wolfender JL, Marti G, Thomas A, Bertrand S (2015) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Zou L, Liu Y, Zhang Z, Ong CN (2011) Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom Rev 30:1143–1172

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Zanchet D, Hall BD, Ugarte D (2001) X-ray characterization of nanoparticles. In: Characterization of nanophase materials. Wiley-VCH Verlag GmbH, Weinheim, pp 13–36

    Google Scholar 

  • Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN (2007) Silver nanoparticles directly formed on natural macroporou matrix and their anti-microbial activities. Nanotechnology 18:1–8

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Krohn K, Draeger S, Schulz B (2008) Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod 71(6):1078–1081. https://doi.org/10.1021/np800095g

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra P, Paulo PM, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7(6):379–382

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O., Panpatte, D.G., Bello, O.M., Adekoya, M.A. (2019). Application of Nanoengineered Metabolites from Beneficial and Eco-friendly Microorganisms as a Biological Control Agents for Plant Pests and Pathogens. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_13

Download citation

Publish with us

Policies and ethics