Skip to main content

Methods and Mechanisms Involved in Antimicrobially Useful Nanoparticles with Agricultural Promises

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection
  • 978 Accesses

Abstract

The agricultural productivity is significantly influenced by various abiotic and biotic factors including changes in agroclimatic conditions, soil fertility and pathogenic attack. For the management of these issues, farmers generally use chemical fertilizers and pesticides. But the toxicity of these chemicals can lead to environmental pollution and severe human health problems, and it also affects soil fertility. The application of nanotechnology in agriculture is an emerging and rapidly evolving area of research with promises to enhance crop yield and productivity. The controlled release of nanoparticles can provide added advantage to the agricultural field by enhancing the plant growth and protection. The reduced toxicity and the antimicrobial properties of biologically synthesized nanoparticles offer novel application strategies with tremendous application in the agricultural field. Understanding on the underlying mechanisms of ‘nano’ can also enable the design of innovative technologies for enhanced agriculture productivity sustainability, and the chapter is prepared based on this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem 66(33):8647–8661

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28(4):313–318

    Article  CAS  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8(5):417–432

    Article  CAS  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28(5):978–985. https://doi.org/10.1007/s11095-010-0309-1

    Article  PubMed  CAS  Google Scholar 

  • Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7(5):225–241

    Article  CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:641759

    Article  CAS  Google Scholar 

  • Atkinson A, Winge DR (2009) Metal acquisition and availability in the mitochondria. Chem Rev 109(10):4708–4721

    Article  PubMed  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. https://doi.org/10.1038/nnano.2009.242

    Article  PubMed  CAS  Google Scholar 

  • Babu MG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B: Biointerfaces 74(1):191–195

    Article  CAS  Google Scholar 

  • Bakalova R, Zhelev Z, Ohba H, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22(11):1360–1361. https://doi.org/10.1038/nbt1104-1360

    Article  PubMed  CAS  Google Scholar 

  • Bankier C, Cheong Y, Mahalingam S, Edirisinghe M, Ren G, Cloutman-Green E, Ciric L (2018) A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One 13(2):e0192093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27(8):085103. https://doi.org/10.1088/0957-4484/27/8/085103

    Article  PubMed  CAS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manage 61(1):80–89

    Article  CAS  Google Scholar 

  • Cai D, Wu Z, Jiang J, Wu Y, Feng H, Brown IG, Yu Z (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 4:3665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation -a novel phenomenon. J Appl Phycol 21(1):145–152

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochemica Acta 51(5):956–960

    Article  CAS  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Cuero RG, Osuji G, Washington A (1991) N-carboxymethyl chitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13(6):441–444

    Article  CAS  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci Nano 2(2):203–212

    Article  CAS  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4(2):121–126

    Google Scholar 

  • De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegradation 85:217–222. https://doi.org/10.1016/j.ibiod.2013.07.007

    Article  CAS  Google Scholar 

  • Dong CX, Cairney J, Sun QH, Maddan OL, He GH, Deng YL (2010) Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. J Nanopart Res 12(6):2101–2109. https://doi.org/10.1007/s11051-009-9769-9

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  • Fatimah I, Mutiara NAL (2016) Biosythesis of silver nanoparticles using Putri Malu (Mimosa pudica) leaves extract and microwave irradiation method. Mol Ther 11(2):288–298

    CAS  Google Scholar 

  • Feng QL, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  PubMed  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • García-Rincón J, Vega-Pérez J, Guerra-Sanchez MG, Hernandez-Lauzardo AN, Peña-Díaz A, Velazquez-Del Valle MG (2010) Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Pestic Biochem Physiol 97(3):275–278

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28. https://doi.org/10.1007/BF03215529

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  PubMed  CAS  Google Scholar 

  • Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G, Kannan C (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostructure Chem 3(67):1–6

    Google Scholar 

  • Gnanasangeetha D, Thambwani DS (2013) Biogenic production of zinc oxide nanoparticles using Acalypha indica. J Chem Biol Phys Sci 11(2):238–246

    Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101(1):187–195. https://doi.org/10.1093/aob/mcm283

    Article  PubMed  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):1231–1234. https://doi.org/10.1166/jnn.2016.12332

    Article  PubMed  CAS  Google Scholar 

  • Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2):191–198. https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  CAS  Google Scholar 

  • Guo Z, Ren J, Wang J, Wang E (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85(5):2517–2521

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74(1):328–335

    Article  CAS  Google Scholar 

  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 1(1):33–38

    Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  PubMed  CAS  Google Scholar 

  • Hajirostamlo B, Mirsaeedghazi N, Arefnia M, Ali M, Shariati EAF (2015) The role of research and development in agriculture and its dependent concepts in agriculture. Sci and Eng 4(1)

    Google Scholar 

  • Hassaan MA, Hosny S (2018) Green synthesis of Ag and Au nanoparticles from micro and macro algae-review. Int J Atmospheric Ocean Sci 2(1):10

    Article  Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol Prog 24(2):476–480

    Article  PubMed  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215. https://doi.org/10.1016/j.micres.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  • He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63(11):2930–2934

    Article  PubMed  CAS  Google Scholar 

  • Heatley NG (1944) A method for the assay of penicillin. Biochem J 38(1):61

    PubMed  PubMed Central  CAS  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7(3):999–1005

    Google Scholar 

  • Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L et al (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48:703–709. https://doi.org/10.1016/j.plaphy.2010.04.001

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Heo CH, Kim G, Jun EJ, Yin J, Kim HM, Yoon J (2015) One-photon and two-photon sensing of biothiols using a bis-pyrene-Cu (II) ensemble and its application to image GSH in the cells and tissues. Anal Chem 87(6):3308–3313

    Article  PubMed  CAS  Google Scholar 

  • Hua KH, Wang HC, Chung RS, Hsu JC (2015) Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci 40:208–213

    Article  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65(4):551–560. https://doi.org/10.1111/ppa.12443

    Article  CAS  Google Scholar 

  • Jain J, Arora S, Rajwade J, Omray P, Khandelwal S, Paknikar K (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for Topicaluse. Mol Pharm 6:1388–1401. https://doi.org/10.1021/mp900056g

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  PubMed  CAS  Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30(2):168–175

    Article  Google Scholar 

  • Janardhanan A, Roshmi T, Varghese R, Soniya E, Mathew J, Radhakrishnan E (2013) Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin. Mater Sci-Poland 31(2):173–179

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L). Saudi Pharm J 25(3):443–447

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71(2):226–229

    Article  PubMed  CAS  Google Scholar 

  • Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13(12):6877–6885

    Article  CAS  Google Scholar 

  • Jorgensen JH (1998) Performance standards for antimicrobial disk susceptibility tests: approved standard. NCCLS, Wayne, p 17

    Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65(1):150–153

    Article  PubMed  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Barath ManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces 77(2):257–262

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413. https://doi.org/10.1021/la800951v

    Article  PubMed  CAS  Google Scholar 

  • Kathad U, Gajera HP (2014) Synthesis of copper nanoparticles by two different methods and size comparison. Int J Pharm Bio Sci 5(3):533–540

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanbe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khota LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58. https://doi.org/10.5941/MYCO2012401053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Gianolio D (2018) Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small 14(10):1703145

    Article  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Bagavan A (2011) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65(17–18):2745–2747

    Article  CAS  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5(1):135

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  PubMed  CAS  Google Scholar 

  • Kuswandi B (2016) Nanotechnology in food packaging. Nanosci Food Agric 1:151–183

    Article  Google Scholar 

  • la Rosa-García D, Susana C, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J Nanomater 2018:9

    Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354. https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Langmuir SG (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  PubMed  CAS  Google Scholar 

  • Li L-H, Yen M-Y, Ho C-C, Wu P, Wang C-C, Maurya PK et al (2013) Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One 8:e64794

    Article  PubMed  PubMed Central  Google Scholar 

  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM (2011) A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol 6:784–787. https://doi.org/10.1038/nnano.2011.163

    Article  PubMed  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles the role of ROS mediated cell injury. Nanotechnology 22(10):105101. https://doi.org/10.1088/0957-4484/22/10/105101

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95(2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 12(4):527–534

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Xu S, Lou J (2015) Gold nanorods. In: Bhushan B (ed) Encyclopedia of nanotechnology. Dordrecht, Springer, pp 1–9

    Google Scholar 

  • Lv J, Zhang S, Luo L, Han W, Zhang H, Yang K, Christie P (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–7221. https://doi.org/10.1021/es301027

    Article  PubMed  CAS  Google Scholar 

  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597. https://doi.org/10.3389/fpls201700597

    Article  PubMed  PubMed Central  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha GDG, Annadurai G (2013) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invent Today 5(2):119–125

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp MBRC-1. Bio Med Res Int 9:287638

    Google Scholar 

  • Mathew S, Prakash A, Radhakrishnan EK (2018a) Sunlight mediated rapid synthesis of small size range silver nanoparticles using Zingiber officinale rhizome extract and its antibacterial activity analysis. Inorg Nano-Metal Chem 48(2):139–145

    Article  CAS  Google Scholar 

  • Mathew S, Raveendran A, Mathew J, Radhakrishnan EK (2018b) Antibacterial effectiveness of rice water (starch)-capped silver nanoparticles fabricated rapidly in the presence of sunlight. Photochem Photobiol 95(2):627–634

    Article  PubMed  CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minaeian S, Shahverdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria Jundishapur. J Nat Pharm Prod 17:1–4

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881. https://doi.org/10.1371/journal.pone.0097881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Mudunkotuwa IA, Rupasinghe T, Wu C-M, Grassian VH (2012) Dissolution of ZnO nanoparticles at circum neutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403. https://doi.org/10.1021/la203542x

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointerfaces 79:488–493

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Harrison A, Sabbani S, Munson RS, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833–1852

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    Article  PubMed  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Nima AZ, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4:64985–64993. https://doi.org/10.1039/C4RA10358K

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483. https://doi.org/10.1021/acsjafc5b05214

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010

    Article  PubMed  CAS  Google Scholar 

  • Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10(7):e0132971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozdemir M, Kemerli T (2016) In: Lakkis JM (ed) Innovative applications of micro and nanoencapsulation in food packaging, in encapsulation and controlled release technologies in food systems. Wiley, Chichester, pp 333–378

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle ? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. https://doi.org/10.1128/AEM02218-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palanisamy G, Pazhanivel T (2017) Green synthesis of MgO nanoparticles for antibacterial activity. Int Res J Eng and Technol 4(9):137–141

    Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5(10146):1–12

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles-the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Perez J, Bax L, Escolano C (2005) Roadmap report on nanoparticles. Willems & Van Den Wil denberg, Barcelona NanoRoad map is a project co-funded by the 6th Framework Programme of the EC. http://nanoparticles.org/pdf/PerezBaxEscolano.pdf

  • Pourali P, Razavian Zadeh N, Yahyaei B (2016) Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair Regen 24(5):860–869

    Article  PubMed  Google Scholar 

  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785

    Article  PubMed  CAS  Google Scholar 

  • Prasad KA, Jha K, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2(5):248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. https://doi.org/10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai M, Yadav A, Cioffi N (2012) Silver nanoparticles as nano-antimicrobials: bioactivity, benefits and bottlenecks. Nano-Antimicrob:211–224. https://doi.org/10.1007/978-3-642-24428-5_7

    Google Scholar 

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P et al (2013) Review article; scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1(3):041–044

    Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1228

    Article  Google Scholar 

  • Ravindranadh MRK, Mary TR (2013) Development of ZnO nanoparticles for clinical applications. J Chem Biol Phys 967 Sci (JCBPS) 4:469

    Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124. https://doi.org/10.1046/j1365-3040200300950x

    Article  Google Scholar 

  • Rodríguez J, Martín MJ, Ruiz AM, Clares B (2016) Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int 83:41–59. https://doi.org/10.1016/jfoodres201601032

    Article  Google Scholar 

  • Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1–2):67–77

    Article  PubMed  CAS  Google Scholar 

  • Roshmi T, Jishma P, Radhakrishnan EK (2017) Photocatalytic and antibacterial effects of silver nanoparticles fabricated by Bacillus subtilis SJ15. Inorg Nano-Metal Chem 47(6):901–908

    Article  CAS  Google Scholar 

  • Rout A, Jena PK, Parida UK, Bindhani BK (2013) Green synthesis of silver nanoparticles using leaves extract of Centella asiatica L for studies against human pathogens. Int J Pharm Biol Sci 4(4):661–674

    CAS  Google Scholar 

  • Roy AS, Parveen A, Koppalkar AR, Prasad MA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37

    Article  CAS  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  PubMed  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6(1):61–70

    Article  CAS  Google Scholar 

  • Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the developing world. PLoS Med 2(5):e97. https://doi.org/10.1371/journal.pmed.0020097

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvati A, Nelissen I, Haase A, Åberg C, Moya S, Jacobs A, Dawson KA (2018) Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. Nano Impact 9:42–50

    Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976

    Article  PubMed  CAS  Google Scholar 

  • Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B: Biointerfaces 88(1):325–331

    Article  PubMed  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68

    Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Sharma D, Rajput J, Kaith B, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519(3):1224–1229. https://doi.org/10.1016/jtsf201008073

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Shishir MRI, Xie L, Sun C, Zheng X, Chen W (2018) Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 78:34–60

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesise of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Shyla KK, Natarajan N, Nakkeeran S (2014) Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina. J Mycol Plant Pathol 44:268–273

    Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L et al (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402. https://doi.org/10.1007/s00299-014-1624-5

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2014a) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L) and its toxicological behavior. Synth React Inorg Met-Org Nano-Met Chem 44:1128–1131

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014b) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137

    Article  PubMed  CAS  Google Scholar 

  • Takkar PN, Walker CD (1993) The distribution and correction of zinc deficiency. In: Robson AD (ed) Zinc in soils and plants, development in plant and soil science. Kluwer Academic Publishers, Boston, pp 151–165

    Chapter  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12(324):1747–0862

    Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus Phaenerochaete chrysosporium. Colloids Surf B 53(1):55–59

    Article  CAS  Google Scholar 

  • Wan Y, Li J, Ren H, Huang J, Yuan H (2014) Physiological investigation of gold nanorods toward watermelon. J Nanosci Nanotechnol 14:6089–6094. https://doi.org/10.1166/jnn20148853

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 46:4434–4441. https://doi.org/10.1021/es204212z

    Article  PubMed  CAS  Google Scholar 

  • Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417. https://doi.org/10.1007/s11051-013-1417-8

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806. https://doi.org/10.1016/jcarbon201311072

    Article  CAS  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Wayne PA (2004) Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a

    Google Scholar 

  • Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75(1):215–221

    PubMed  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mödler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE, Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh J, Zink J, Nel A (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134. https://doi.org/10.1021/nn800511k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Sindhe MA, Satyanarayan ND, Pramod SN, Nagaraja K (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T arjuna bark extract Spectrochimica. Acta Part A: Mol Biomol Spectrosc 110:108–115

    Article  CAS  Google Scholar 

  • Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212

    Article  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Wang Y, Gilbertson LM (2018) Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environ Sci Nano 5(1):11–26

    Article  CAS  Google Scholar 

  • Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Kor Chem Soc 34:3261–3264

    Article  CAS  Google Scholar 

  • Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids–a potential antibacterial agent. Prog Nat Sci 18:939–944

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Zheng X (2011) Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Sci Total Environ 409(3):625–630

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA et al (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8. https://doi.org/10.1016/jcej201201041

    Article  CAS  Google Scholar 

  • Zinjarde S (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3:74

    Article  CAS  Google Scholar 

  • Zwingmann N, Mackinnon IDR, Gilkes RJ (2011) Use of a zeolite synthesized from alkali treated kaolin as a K fertilizer, glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl Clay Sci 53:684–690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Aswani, R., Mathew, J., Radhakrishnan, E.K. (2019). Methods and Mechanisms Involved in Antimicrobially Useful Nanoparticles with Agricultural Promises. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_11

Download citation

Publish with us

Policies and ethics