Skip to main content

Antimicrobial Activities of Nanoparticles

  • Chapter
  • First Online:
Nanotechnology for Agriculture: Crop Production & Protection

Abstract

At present, nanotechnology has entered in various fields of science and technology. This can be understood from the large volume of products and turnover of this industry. It has high potential in solving various problems and increasing the quality of manufactured products in different fields. One of the major issues in agriculture is the damage caused by the microbial contamination of the products from the farm to the table, resulting in financial costs for the producers and endangering the final consumer health. At present, various studies have been done on the antimicrobial properties of nanoparticles. Some of these studies focus on the application of this feature in the agricultural sector, especially the management of microbial contamination of agricultural products. This chapter attempts to evaluate the antimicrobial properties of nanoparticles in two areas of plant disease management and food packaging industry with the aim of increasing the quality and reducing the damage caused by bacterial and fungal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KBA, Raman T, Anbazhagan V (2016) Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv 6:44415

    Article  CAS  Google Scholar 

  • Applerot G, Perkas N, Amirian G, Girshevitz O, Gedanken A (2009) Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl Surf Sci 256:S3–S8

    Article  CAS  Google Scholar 

  • Arakha M, Pal S, Samantarrai D et al (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393

    Article  PubMed  CAS  Google Scholar 

  • Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319

    Article  CAS  Google Scholar 

  • Bogino PC, Oliva Mde L, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boholm M, Arvidsson R (2016) A definition framework for the terms nanomaterial and nanoparticle. NanoEthics 10:25–40

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  PubMed  CAS  Google Scholar 

  • Brunel F, El Gueddari N, Moerschbacher B (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    PubMed  CAS  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao VD, Nguyen PP, Khuong VQ, Nguyen CK, Nguyen XC, Dang CH, Tran NQ (2014) Ultrafine copper nanoparticles exhibiting a powerful antifungal/killing activity against Corticium salmonicolor. Bull Kor Chem Soc 35:2645–2648

    Article  CAS  Google Scholar 

  • Carlson R, Taffs R, Davison W, Stewart P (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci Polym Ed 19:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    Article  PubMed  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry Q, Scotte M, Blackburn J, Ross B, Boxall A, Castle L (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:241–258

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160

    Article  CAS  Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2013) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Hortic 973:231–237

    Article  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46:261–266

    PubMed  PubMed Central  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  PubMed  CAS  Google Scholar 

  • De Azeredo HMC (2012) Antimicrobial activity of nanomaterials for food packaging applications. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects. Springer, Berlin/Heidelberg, pp 375–394

    Chapter  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  CAS  PubMed  Google Scholar 

  • Divya K, Vijayan S, George TK, Jisha M (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18:221–230

    Article  CAS  Google Scholar 

  • Dumas E, Gao C, Suffern D et al (2010) Interfacial charge transfer between CdTe quantum dots and gram negative vs. gram positive bacteria. Environ Sci Technol 44:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • El-Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Elgorban AM, El-Samawaty AEM, Yassin MA, Sayed SR, Adil SF, Elhindi KM, Bakri M, Khan M (2016) Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Biotechnol Biotechnol Equip 30:56–62

    Article  CAS  Google Scholar 

  • Elhusseiny AF, Hassan HH (2013) Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure–property relationship. Spectrochimica Acta Part A: Mol Biomol Spectroscopy 103:232–245

    Article  CAS  Google Scholar 

  • Elmer WH, Ma C, White JC (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Health 6:66–70

    Article  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010a) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010b) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22:408413

    Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010c) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22:408–413

    Article  CAS  Google Scholar 

  • Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5:1368–1373

    CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors (Basel) 5:537–561

    Article  CAS  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642

    Article  PubMed  CAS  Google Scholar 

  • Fernando S, Gunasekara T, Holton J (2018) Antimicrobial nanoparticles: applications and mechanisms of action. SLJID 8:2–11

    Google Scholar 

  • Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322–328

    Article  PubMed  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Goodburn C, Wallace CA (2013) The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32:418–427

    Article  CAS  Google Scholar 

  • Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2):720–726

    Article  PubMed  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, De Aberasturi D, De Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  PubMed  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44:161–181

    Article  PubMed  CAS  Google Scholar 

  • Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA et al (2017) A review on nanoAntimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18:120–128

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Hosseinkhani P, Zand AM, Imani S, Rezayi M, Rezaei Zarchi S (2011) Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimension 1:279–285

    CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  PubMed  CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomate 2012:632698

    Article  CAS  Google Scholar 

  • Jampilek J, Kralova K (2018) Benefits and potential risks of nanotechnology applications in crop protection. In: Abd-Elsalam KA, Prasad R (eds) Nanobiotechnology applications in plant protection, Nanotechnology in the life sciences. Springer, Cham, pp 189–246

    Chapter  Google Scholar 

  • Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photochem Photobiol A Chem 158:111–117

    Article  CAS  Google Scholar 

  • Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Karimi E, Mohseni Fard E (2017) Nanomaterial effects on soil microorganisms. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, Soil Biology 48. Springer, Cham, pp 137–200

    Chapter  Google Scholar 

  • Karimi E, Sadeghi A (2019) Toxicity effect of silver nanoparticles on two plant growth promoting Streptomyces spp. strains, phytopathogenic fungi Fusarium Solani and phytopathogenic oomycetes Pythium aphanidermatum and Pythium ultimum. Modares J Biotechnol 10:23–27

    Google Scholar 

  • Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869

    Article  Google Scholar 

  • Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86

    Google Scholar 

  • Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2:47–57

    Article  Google Scholar 

  • Khatami M, Mehnipor R, Poor MHS, Jouzani GS (2016) Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 27:1601–1612

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamasal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  PubMed  CAS  Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009a) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. Var. inermis (Bunge) Rehd). Food Chem 114:547–552

    Article  CAS  Google Scholar 

  • Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009b) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 64:504–509

    Article  CAS  Google Scholar 

  • Li M, Zhu LZ, Lin DH (2011a) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Li W, Li X, Zhang P, Xing Y (2011b) Development of nano-ZnO coated food packaging film and its inhibitory effect on Escherichia coli in vitro and in actual tests. Adv Mater Res 152–153:489–492

    Google Scholar 

  • Li X, Li W, Xing Y, Jiang Y (2011c) Effects of nano-ZnO powder-coated PVC film on the physiological properties and microbiological changes of fresh-cut ‘Fuji’ apple. Adv Mater Res 152–153:450–453

    Google Scholar 

  • Lu C (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20:891–903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxides nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2016) Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT-Food Sci Technol 71:347–355

    Article  CAS  Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    Article  CAS  Google Scholar 

  • Nassar AM (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Article  Google Scholar 

  • Nawaz HR, Solangi BA, Zehra B, Nadeem U (2011) Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Can J Sci Ind Res 2:164–170

    Google Scholar 

  • Nejdl L, Kudr J, Moulick A, Hegerova D, Ruttkay-Nedecky B, Gumulec J, Cihalova K, Smerkova K, Dostalova S, Krizkova S et al (2017) Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS One 12:e0180798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  PubMed  CAS  Google Scholar 

  • Ojha S, Singh AD, Sett R, Chetia H, Kabiraj D, Bora U (2018) Nanotechnology in crop protection. In: Kumar Tripathi D et al (eds) Nanomaterials in plants, algae, and microorganisms: concepts and controversies. Elsevier Inc., London, pp 345–391

    Chapter  Google Scholar 

  • Pan X, Wang Y, Chen Z et al (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Pelka J, Gehrke H, Esselen M, Turk M, Crone M, Brase S et al (2009) Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol 22:649–659

    Article  PubMed  CAS  Google Scholar 

  • Perez Espitia PJ, Ferreira Soares NF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Alves Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Pestovsky YS, Martinez-Antonio A (2017) The use of nanoparticles and nanoformulations in agriculture. J Nanosci Nanotechnol 17:8699–8730

    Article  CAS  Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14:76–91

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  PubMed  CAS  Google Scholar 

  • Rasika T, Bajpai SK (2010) Silver-nanoparticle-loaded chitosan lactate films with fair antibacterial properties. J Appl Polym Sci 115(3):1894–1900

    Article  CAS  Google Scholar 

  • Radusin TI, Ristic IS, Pilic BM, Novakovic AR (2016) Antimicrobial nanomaterials for food packaging applications. Food Feed Res 43:119–126

    Article  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29

    Article  PubMed  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8. Article ID 925494

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma S, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Sangsuwan J, Rattanapanone N, Rachtanapun P (2008) Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biol Technol 49:403–410

    Article  CAS  Google Scholar 

  • Sanpui P, Murugadoss A, Prasad P, Ghosh S, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124(2):142–146

    Article  PubMed  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809

    Article  PubMed  CAS  Google Scholar 

  • Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M et al (2010) Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine 5:631–637

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schell MA (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38:263–292

    Article  PubMed  CAS  Google Scholar 

  • Shah SNA, Shah Z, Hussain M, Khan M (2017) Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl 2017:1–12. 4101735

    Article  CAS  Google Scholar 

  • Sharma KD (2017) Antifungal activity of biogenic platinum nanoparticles: an in vitro study. Int J Curr Microbiol App Sci 6:334–340

    Article  CAS  Google Scholar 

  • Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact-a review. Int J Pharm Sci Invent 3:28–38

    Google Scholar 

  • Simon-Deckers A et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    Article  PubMed  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Sotelo-Boyas ME, Bautista-Banos S, Correa-Pacheco ZN, Jimenez-Aparicio A, Sivakumar D (2016) Biological activity of chitosan nanoparticles against pathogenic fungi and bacteria. In: Bautista-Banos S, Romanazzi G, Jimenez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities. Elsevier Inc., Amsterdam, pp 339–349

    Chapter  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukova IV, Sheveyko AN, Kiryukhantsev-Korneev PV et al (2015) Toward bioactive yet antibacterial surfaces. Colloid Surface B 135:158–165

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  PubMed  CAS  Google Scholar 

  • Turalija M, Bischof S, Budimir A, Gaan S (2016) Antimicrobial PLA films from environment friendly additives. Compos Part B 102:94–99

    Article  CAS  Google Scholar 

  • Vanathi P, Rajiv P, Sivaraj R (2016) Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci 39:1165–1170

    Article  CAS  Google Scholar 

  • Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 9:47–62

    Article  CAS  Google Scholar 

  • Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Oh BT (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37:1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Velmurugan P, Shim J, Kim K, Oh BT (2016) Prunus × yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett 174:61–65

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu B (2010) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408:1755–1758

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  • Yang W, Shen C, Ji Q, An H et al (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:085102

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wang J, Xiu ZM, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    PubMed  CAS  Google Scholar 

  • Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan–starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C30(6):891–897

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Yuliar Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30:1–11

    Article  PubMed  Google Scholar 

  • Zahid N, Alderson P, Ali P, Maqbool M, Manickam S (2013) In vitro control of Colletotrichum gloeosporioides by using chitosan loaded nanoemulsions. Acta Hortic 1012:769–774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karimi, E. (2019). Antimicrobial Activities of Nanoparticles. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore. https://doi.org/10.1007/978-981-32-9374-8_10

Download citation

Publish with us

Policies and ethics