Skip to main content

Use of Bio-Based Nanoparticles in Agriculture

  • Chapter
  • First Online:
Book cover Nanotechnology for Agriculture

Abstract

The use of bio-based nanoparticles is getting importance due to their ecofriendly and economic nature. Bio-based nanoparticles mainly synthesized from bottom-up approach and mother protein, secondary metabolite, extract, etc. act as stabilizing and capping agent. It helps to synthesize more stable and uniform nanoparticles as compared to chemical methods. High catalytic activity, more surface area, ion exchange capacity, fluorescence activity, and presence in different dimension such as metals, ceramics, and magnetic form allowed use of nanoparticles and their formulation in the field of agriculture such as soil nutrients, crop protectants, environment cleanup, contaminant detection, and reduction of post-harvest losses. Further, nano formulation approaches for controlled delivery of pesticides, nutrients, genetic materials, and growth stimulator can act as an another boon in the agriculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Khan M, Siddiqui M, AlSalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys E Low Dimens Syst Nanostruct 43:1266–1271

    Article  CAS  Google Scholar 

  • Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lina M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces 171:398–405

    Article  CAS  PubMed  Google Scholar 

  • Aytar P, Şam M, Çabuk A (2008) Microbial desulphurization of Turkish lignites. Energy Fuel 22:1196–1199

    Article  CAS  Google Scholar 

  • Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. In Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Chennai, pp 387–390

    Google Scholar 

  • Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, India, ISBN-13: 978-81-322-2089-3, pp 113–126

    Google Scholar 

  • Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Du J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B Biointerfaces 117:199–205

    Article  CAS  PubMed  Google Scholar 

  • Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pest Biochem Physiol 149:26–36

    Article  CAS  Google Scholar 

  • Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol 19:171–177

    Article  CAS  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella G, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white rot fungus from Chilean forests. J Nanomater. https://doi.org/10.1155/2015/789089

    Article  CAS  Google Scholar 

  • Das K, Thiagarajan P (2012) Mycobiosynthesis of metal nanoparticles. Int J Nanotech Nanosci 1:1–10

    Article  Google Scholar 

  • Dauthal P, Mukhopadhyay M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res 51(40):13014–13020

    Article  CAS  Google Scholar 

  • El-Batal AI, El Kenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39

    Article  Google Scholar 

  • Faramarzia MA, Forootanfara H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B Biointerfaces 87(1):23–27

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Biogenic synthesis of silver nano-particles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine NBM 6:103–109

    Article  CAS  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638

    Article  CAS  PubMed  Google Scholar 

  • Gangula A, Podila R, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4- nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274

    Article  PubMed  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Hassan HS, Elkady MF, El-Sayed EM, Mahmoud IM (2018) Synthesis and characterization of zinc oxide nanoparticles using green and chemical synthesis techniques for phenol decontamination. Int J Nanoelectron Mater 11(2):179–194

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem J 46:132–140

    CAS  Google Scholar 

  • Kavitha K, Elaiyakumar R, Sampath A, Sivasankar R, Vinothini S, Bharathi M, Kavitha D (2018) Formulation and evaluation of antimicrobial gel embedded with plant derived silver nanoparticles. Pharmacol Pharm Rep 1(1):13–21

    Google Scholar 

  • Kozielski KL, Tzeng SY, Green JJ (2013) Bioengineered nanoparticles for siRNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):449–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974

    Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immuno-assay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  CAS  PubMed  Google Scholar 

  • Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10:161–165

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1):519–525

    Article  CAS  PubMed  Google Scholar 

  • Noda Y, Asaka T, Fudouzi H, Hayakawa T (2018) Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications. Appl Surf Sci 435:687–698

    Article  CAS  Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790

    Article  CAS  PubMed  Google Scholar 

  • Rathore I, Tarafdar JC (2015) Prospective of biosynthesized magnesium nanoparticles in foliar application of wheat plant. J Bionanosci 9:209–214

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(147):1–8

    Google Scholar 

  • Siddiquee S, Rovina K, Yusof NA, Rodrigues KF, Suryani S (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Bio Sensing Res 2:16–22

    Article  Google Scholar 

  • Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164

    Article  PubMed  CAS  Google Scholar 

  • Sur UK, Ankamwar B, Karmakar S, Halder A, Dasa P (2018) Green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. Mater Today Proc 5:2321–2329

    Article  CAS  Google Scholar 

  • Tarafdar JC, Rathore I (2016) Microbial synthesis of nanoparticles for use in agriculture ecosystem. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, Delhi, pp 105–118

    Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tarafdar J, Rathore I, Kaur R and Jain A (2018) Biosynthesis of nanonutrients for agricultural applications, In: Singh B, Katare OP, Souto EB (ed) Emerging trend in nanobiomedicine, nanoagroceuticals & nanophytochemicals, CRC Press, ISBN 9780815389774, pp 15–30

    Google Scholar 

  • Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Umer A, Naveed S, Ramzan N (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nano: Brief Rep Rev 7(5):1–18

    Article  CAS  Google Scholar 

  • Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: a rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp 384:337–344

    Article  CAS  Google Scholar 

  • Vandergheynst J, Scher H, Guo HY, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. Biol Control 52:207–229

    CAS  Google Scholar 

  • Vetchinkina EP, Burov AM, Ageeva MV, Dykman LA, Nikitin VE (2013) Biological synthesis of gold nanoparticles by the xylotrophic basidiomycete Lentinula edodes. Appl Biochem Microbiol 49:406–411

    Article  CAS  Google Scholar 

  • Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24(6):1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Waclawek S, Goncukova Z, Adach K, Fijalkowski M, Cernik M (2018) Gren synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environ Sci Pollut Res 25:1–10

    Article  CAS  Google Scholar 

  • Yesilada O, Asma D, Cing S (2003) Decolorization of textile dyes by fungal pellets. Process Biochem 38:933–938

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102

    Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandelwal, A., Joshi, R., Mukherjee, P., Singh, S.D., Shrivastava, M. (2019). Use of Bio-Based Nanoparticles in Agriculture. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_6

Download citation

Publish with us

Policies and ethics