Skip to main content

Nanotechnology for Polluted Soil Remediation

  • Chapter
  • First Online:
Nanotechnology for Agriculture

Abstract

Nanotechnology had been attracted many scientists for its unique physical, chemical, and biological characteristics that differ from those in a large-scale model for the same material. Nanomaterials were developed for many applications in many fields such as medicine, drug delivery, electronics, fuel cells, solar cells, food, space, and etc. Among these applications, nanomaterials had proved many benefits for remediation of different soil pollutants. Nanomaterial can help in detection and treatment of soil pollutants in variety of ways. Nanomaterials precipitates soil pollutants, acts as solid waste stabilizer and controls soil erosion. The potential of nanotechnology in soil reclamation is huge, but a few issues only will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341

    Article  CAS  Google Scholar 

  • Andry H, Yamamoto T, Inoue M (2009) Influence of artificial zeolite and hydrated lime amendments on the erodibility of an acidic soil. Commun Soil Sci Plant Anal 40(7–8):1053–1072

    Article  CAS  Google Scholar 

  • Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15(12):2056–2066

    Article  CAS  Google Scholar 

  • Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, JLB L, Botta A, Wiesner MR, Bottero JY (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373

    Article  CAS  PubMed  Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33(6):951–957

    Article  CAS  Google Scholar 

  • Bigham JM, Fitzpatrick RW, Schulze DG (2002) Iron oxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 323–366

    Google Scholar 

  • Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369(1–3):307–332

    Article  CAS  PubMed  Google Scholar 

  • Butler EC, Hayes KF (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environ Sci Technol 32(9):1276–1284

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33(12):2021–2027

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF (2001) Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35(19):3884–3891

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Ahmed B, Beyenal H (2010) Immobilization of uranium in groundwater using biofilms. In: Shah V (ed) Emerging environmental technologies, vol 2. Springer, New York, pp 1–37

    Google Scholar 

  • Chlopecka A, Adriano DC (1996) Mimicked in-situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ Sci Technol 30(11):3294–3303

    Article  CAS  Google Scholar 

  • Coppola E, Battaglia G, Bucci M, Ceglie D, Colella A, Langella A, Buondonno A, Colella C (2003) Remediation of Cd- and Pb-polluted soil by treatment with organo-zeolite conditioner. Clay Clay Miner 51(6):609–615

    Article  CAS  Google Scholar 

  • Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942

    Article  CAS  PubMed  Google Scholar 

  • Dickinson M, Scott TB (2010) The application of zero valent iron nanoparticles for the remediation of a uranium contaminated waste effluent. J Hazard Mater 178(1–3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Drott A, Lambertsson L, Bjorn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41(7):2270–2276

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Rebedea I, Lepp NW, Lovell AJ (1999) An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ Geochem Health 21(2):157–173

    Article  CAS  Google Scholar 

  • Eighmy TT, Crannell BS, Butler LG, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 31(11):3330–3338

    Article  CAS  Google Scholar 

  • Fang G, Si Y, Tian C, Zhang G, Zhou D (2012) Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res 19:784–793

    Article  CAS  Google Scholar 

  • Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero- valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol 32(10):1466–1473

    Article  CAS  Google Scholar 

  • Franco DV, Da Silva LM, Jardim WF (2009) Reduction of hexavalent chromium in soil and ground water using zerovalent iron under batch and semi-batch conditions. Water Air Soil Pollut 197(1–4):49–60

    Article  CAS  Google Scholar 

  • Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16(2):233–251

    Article  CAS  Google Scholar 

  • Geebelen W, Vangronsveld J, Adriano DC, Carleer R, Clijsters H (2002) Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water Air Soil Pollut 140(1–4):261–277

    Article  CAS  Google Scholar 

  • Grace WR (2010) Co Enriching Lives, Everywhere. – Zeolite Structure Archived February 15, 2009, at the Wayback Machine. Grace.com. Retrieved on 2010-12-09

  • Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183

    Article  CAS  PubMed  Google Scholar 

  • Haidouti C (1997) Inactivation of mercury in contaminated soils using natural zeolites. Sci Total Environ 208(1–2):105–109

    Article  CAS  PubMed  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320

    Article  CAS  PubMed  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221

    Article  CAS  PubMed  Google Scholar 

  • He YT, Wan J, Tokunaga T (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10(2):321–332

    Article  CAS  Google Scholar 

  • Hong Y, Honda RJ, Myung NV, Walker SL (2009) Transport of iron-based nanoparticles: role of magnetic properties. Environ Sci Technol 43(23):8834–8839

    Article  CAS  PubMed  Google Scholar 

  • Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408(16):3477–3489

    Article  CAS  PubMed  Google Scholar 

  • Hua B, Deng B (2008) Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ Sci Technol 42(23):8703–8708

    Article  CAS  PubMed  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Li L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xi Y, Yang Y, Chen C, Yuan H, Liu X (2014) Degradation of 2,4-dichlorophenol catalyzed by the immobilized laccase with the carrier of Fe3O4@MSS–NH2. Chin Sci Bull 59(5–6):509–520

    Article  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes J, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184

    Article  CAS  PubMed  Google Scholar 

  • Jaisi DP, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43(24):9161–9166

    Article  CAS  PubMed  Google Scholar 

  • Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42(22):8317–8323

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Knox AS, Kaplan DI, Adriano DC, Hinton TG, Wilson MD (2003) Apatite and phillipsite as sequestering agents for metals and radionuclides. J Environ Qual 32(2):515–525

    Article  CAS  PubMed  Google Scholar 

  • Knox AS, Kaplan DI, Paller MH (2006) Phosphate sources and their suitability for remediation of contaminated soils. Sci Total Environ 357(1–3):271–279

    Article  CAS  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of as, Cr, cu, Pb and Zn in soil using amendments-a review. Waste Manag 28(1):215–225

    Article  CAS  PubMed  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9(2):233–243

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22(10):4638–4642

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111(19):6939–6946

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, We B (2003) Competitive adsorption of Pb2+, Cu2+ and cd 2+ ions from aqueous solutions by multi walled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environ Sci Technol, vol. 41, no. 11, pp. 4158–4163, 2007

    Google Scholar 

  • Lin CF, Lo SS, Lin HY, Lee Y (1998) Stabilization of cadmium contaminated soils using synthesized zeolite. J Hazard Mater 60(3):217–226

    Article  CAS  Google Scholar 

  • Liu J, Valsaraj KT, Delaune RD (2009) Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environ Eng Sci 26(4):833–840

    Article  CAS  Google Scholar 

  • Liu R (2011) In-situ lead remediation in a shoot-range soil using stabilized apatite nanoparticles. In: Proceedings of the 85th ACS colloid and surface science symposium. McGill University, Montreal

    Google Scholar 

  • Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41(12):2491–2502

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    Article  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940

    Article  CAS  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29(4):1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodabadi MR (2010) Experimental study on the effects of natural zeolite on lead toxicity, growth, nodulation, and chemical composition of soybean. Commun Soil Sci Plant Anal 41(16):1896–1902

    Article  CAS  Google Scholar 

  • Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv 5(19):14286–14293

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Article  CAS  PubMed  Google Scholar 

  • Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture and environmental soil remediation. In: Ming DW, Bish DB (eds) Natural zeolites: occurrence, properties, applications. Mineralogical Society of America, Geochemical Society/Italian National Academy, Accademia Nationale dei Lincei (ANL), Saint Louis/Barcelona, pp 619–654

    Chapter  Google Scholar 

  • Moirou A, Xenidis A, Paspaliaris I (2001) Stabilization Pb, Zn, and cd-contaminated soil by means of natural zeolite. Soil Sediment Contam 10(3):251–267

    Article  CAS  Google Scholar 

  • Moore JN, Ficklin WH, Johns C (1988) Partitioning of arsenic and metals in reducing sulfidic sediments. Environ Sci Technol 22(4):432–437

    Article  CAS  Google Scholar 

  • Nissen LR, Lepp NW, Edwards R (2000) Synthetic zeolites as amendments for sewage sludge-based compost. Chemosphere 41(1–2):265–269

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Cai Y (2012) Adsorption and concentration of organic contaminants by carbon nanotubes from environmental samples. In: Kim J (ed) Advances in nanotechnology and the environment. Pan Stanford Publishing, Singapore, pp 79–136

    Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  CAS  Google Scholar 

  • O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271

    Article  Google Scholar 

  • Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of se(VI) to se(-II) by zero-valent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068

    Article  CAS  Google Scholar 

  • Ovenden C, Xiao H (2002) Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surf, A 197(1–3):225–234

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31(7):2039–2044

    Article  CAS  Google Scholar 

  • Peld M, Kaia T, Bender V (2004) Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems. Environ Sci Technol 38(21):5626–5631

    Article  CAS  PubMed  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814

    Article  CAS  Google Scholar 

  • Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazard Mater 117(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Raicevic S, Wright JV, Veljkovic V, Conca JL (2006) Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium. Sci Total Environ 355(1–3):13–24

    Article  CAS  PubMed  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Article  CAS  Google Scholar 

  • Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV (2010) Chemical transformations during aging of zero valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461

    Article  CAS  PubMed  Google Scholar 

  • Renock D, Gallegos T, Utsunomiya S, Hayes K, Ewing RC, Becker U (2009) Chemical and structural characterization of As immobilization by nanoparticles of mackinaw wite (FeSm). Chem Geol 268(1–2):116–125

    Article  CAS  Google Scholar 

  • Revis NW, Osborne TR, Holdsworth G, Hadden C (1989) Distribution of mercury species in soil from a mercury contaminated site. Water Air Soil Pollut 45(1–2):105–113

    CAS  Google Scholar 

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev Camb Philos Soc 76(1):27–64

    Article  CAS  PubMed  Google Scholar 

  • Riba O, Scott TB, Vala Ragnarsdottir K, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72(16):4047–4057

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28(4):646–654

    Article  CAS  PubMed  Google Scholar 

  • Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468

    Article  CAS  Google Scholar 

  • Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of presynthesis stabilized nanoscale FePd particles,” J Contam Hydrol, vol. 118, no. 3–4, pp. 117–127, 2010

    Google Scholar 

  • Saleh N, Kim H, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355

    Article  CAS  PubMed  Google Scholar 

  • Shanableh A, Kharabsheh A (1996) Stabilization of Cd, Ni and Pb in soil using natural zeolite. J Hazard Mater 45(2–3):207–217

    Article  CAS  Google Scholar 

  • Shi X, Sun K, Balogh LP, Baker JR (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554–4560

    Article  CAS  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397

    Article  CAS  Google Scholar 

  • Stanforth R, Qiu J (2001) Effect of phosphate treatment on the solubility of lead in contaminated soil. Environ Geol 41(1–2):1–10

    Article  CAS  Google Scholar 

  • Stead K (2002) Environmental implications of using the natural zeolite clinoptilolite for the remediation of sludge amended soils [Ph.D. thesis], University of Surrey, Surrey, UK

    Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  PubMed  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • Turan NG (2008) The effects of natural zeolite on salinity level of poultry litter compost. Bioresour Technol 99(7):2097–2101

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2001) US environmental protection agency region 10, consensus plan for soil and sediment studies: Coeur d’Alene river soils and sediments bioavailability studies (URS DCN: 4162500.06161.05.a. EPA:16.2), pp 1–16. http://yosemite.epa.gov/R10/CLEANUP.NSF/fb6a4e3291f5d28388256

  • USEPA (2007) The use of soil amendments for remediation, revitalization and reuse. Solid waste and emergency response (5203P) EPA 542-R-07-013, http://clu-in.org/download/remed/epa-542-r-07-013.pdf

  • Villaseñor J, Rodriguez L, Fernandez FJ (2011) Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour Technol 102(2):1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Wang ZS, Hung MT, Liu JC (2007) Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Sci Technol 56(8):125–132

    Article  CAS  PubMed  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Murata Y, Nakamura T, Sakai Y, Osaki M (2009) Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils,” J Plant Nutr, vol. 32, no. 7, pp. 1164–1172, 2009

    Google Scholar 

  • Wolthers M, Charlet L, van Der Weijden CH, van der Linde PR, Rickard D (2005) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim Cosmochim Acta 69(14):3483–3492

    Article  CAS  Google Scholar 

  • Xenidis A, Stouraiti C, Papassiopi N (2010) Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. J Hazard Mater 177(1–3):929–937

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43(20):5171–5179

    Article  CAS  PubMed  Google Scholar 

  • Xueying L, O’Carroll DM, Petersen EJ, Qingguo H, Anderson CL (2009) Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol 43(21):8153–8158

    Article  CAS  Google Scholar 

  • Yamamoto T, Yuya A, Satoh A, Takahasi H, Sumikoshi M, DeghaniSanij H, Agassi M (2004) Application of artificial zeolite to combat soil erosion, In: Proceedings of the American society of agricultural engineers, Canadian society for engineering of agricultural, food and biological system annual international meeting, Government Centre Ottawa, Ontario, Canada, August

    Google Scholar 

  • Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium (VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44(20):7783–7789

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Deng Y (2000) Cationic microparticle based flocculation and retention systems. Chem Eng J 80(1–3):31–36

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zheng M (2011) A technology for enhanced control of erosion, sediment and metal leaching at disturbed land using polyacrylamide and magnetite nanoparticles [M.S. thesis], Auburn University, Auburn, Ala, USA

    Google Scholar 

  • Zorpas AA, Constantinides T, Vlyssides AG, Haralambous I, Loizidou M (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour Technol 72(2):113–119

    Article  CAS  Google Scholar 

  • Zorpas AA, Loizidou M (2008) Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresour Technol 99(16):7545–7552

    Article  CAS  PubMed  Google Scholar 

  • Zorpas AA, Vassilis I, Loizidou M, Grigoropoulou H (2002) Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite. J Colloid Interface Sci 250(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Zorpas AA, Vlyssides AG, Loizidou M (1999) Dewatered anaerobically-stabilized primary sewage sludge composting: metal leachability and uptake by natural clinoptilolite. Commun Soil Sci Plant Anal 30(11–12):1603–1613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, T.A., Fetian, N.A., Elsheery, N.I. (2019). Nanotechnology for Polluted Soil Remediation. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_15

Download citation

Publish with us

Policies and ethics