Skip to main content

Nanoparticle-Mediated Plant Gene Transfer for Precision Farming and Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Nanotechnology for Agriculture

Abstract

Gene transformation in plants through the intervention of genetic engineering has become potent tool in modern molecular breeding. From the last few decades, new developments have been made in transformation methods in plants. Besides a variety of gene delivery methods, Agrobacterium- and biolistic-mediated transformation has proved significant results. The crop productivity has increased through genetic engineering of plants by transformation of desirable genetic traits in agricultural crops under climate change and growing global population. Cell wall as a barrier to external biomolecular delivery remains as a challenge for efficient genetic transformation in plants. Thus, nanoparticles are promising materials for the delivery of biomolecules due to their efficiency to penetrate through this barrier without any external force. Hence, nanoparticles have the potential to deliver biomolecules in plants through genetic engineering. Application of pesticides and fertilizers indiscriminately poses environmental pollution and threat to biodiversity. In this scenario, nanotechnology has prospective future in agrobiotechnological applications to eradicate these problems by virtue of nanomaterials. Nanosized gold (5–25 nm) delivered DNA into plant cells, whereas iron oxide (30 nm)-based nanosensors identified pesticides at very minute levels. These significant functions will assist in the development of precision agriculture which reduces the risk of pollution and enhance the value of farming practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amani A, Zare N, Asadi A et al (2018) Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles. Turk J Biol 42(1):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anami S, Njuguna E, Coussens G et al (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494

    Article  CAS  PubMed  Google Scholar 

  • Ardekani MRS, Abdin MZ, Nasrullah N et al (2014) Calcium phosphate nanoparticles – a novel non-viral gene delivery system for genetic transformation of tobacco. Int J Pharm Pharm Sci 6(6):605–609

    CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P et al (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:1–10

    Article  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. In: Birchler JA (ed) Plant chromosome engineering: methods in molecular biology, vol 701. Humana Press, Totowa, pp 1–35

    Chapter  Google Scholar 

  • Barton KA, Binns AN, Matzke AJM et al (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Bergman P, Glimelius K (1993) Electroporation of rapeseed protoplasts – transient and stable transformation. Physiol Plant 88(4):604–611

    Article  CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V et al (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  PubMed  Google Scholar 

  • Bulgakov VP, Kiselev KV, Yakovlev KV et al (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundock P, Mroczek K, Winkler AA et al (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet 261:115–121

    Article  CAS  PubMed  Google Scholar 

  • Burlaka OM, Pirko YV, Yemets AI et al (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49(6):349–357

    Article  Google Scholar 

  • Chang FP, Kuang LY, Huang CA et al (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Fry JE, Pang SZ et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng XY, Sardana R, Kaplan H et al (1998) Agrobacterium-transformed rice expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci U S A 95:2767–2772

    Google Scholar 

  • Christie PJ, Whitaker N, Gonzalez-Rivera C (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S-M, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10:357–361

    Article  CAS  PubMed  Google Scholar 

  • Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS et al (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897

    Article  CAS  PubMed  Google Scholar 

  • de Framond AJ, Barton KA, Chilton M-D (1983) Mini–Ti: a new vector strategy for plant genetic engineering. Nat Biotechnol 1:262–269

    Article  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Demirer GS, Landry MP (2017) Delivering genes to plants. Chem Eng Prog 113(4):40–45

    CAS  Google Scholar 

  • Demirer GS, Zhang H, Matos J et al (2018) High aspect ratio nanomaterials enable biomolecule delivery and transgene expression or silencing in mature plants. bioRxiv: 179549. https://doi.org/10.1101/179549

  • DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. https://doi.org/10.1038/nnano.2010.2

    Article  CAS  PubMed  Google Scholar 

  • Direnzo F, Cambon H, Dutartre R (1997) A 28-year-old synthesis of micelle templated mesoporous silica. Microporous Mater 10(4–6):283–286

    Article  CAS  Google Scholar 

  • Douroumis D (2011) Mesoporous silica nanoparticles as drug delivery system. J Nanomed Nanotechnol 2:102e. https://doi.org/10.4172/2157-7439.1000102e

    Article  CAS  Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsónov DL et al (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol Apl 14:169–174

    Google Scholar 

  • Enríquez-Obregón GA, Vázquez-padrón RI, Prietosansonov DL et al (1998) Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  • Finiuk N, Buziashvili A, Burlaka O et al (2017) Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell Tissue Organ Cult 131(1):27–39

    Article  CAS  Google Scholar 

  • Fischer G, Frohberg K, Parry ML et al (1994) Climate change and world food supply, demand and trade: who benefits, who loses? Glob Environ Chang 4(1):7–23

    Article  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82(17):5824–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C et al (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–839

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52. https://doi.org/10.3389/fpls.2012.00052

    Article  PubMed  PubMed Central  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790

    Article  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PS, Kim CK, Han G et al (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2(11):2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Yang X, Shi Y et al (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91(7):457–466

    Article  CAS  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hongmin C, Zipeng Z, Jin X (2013) Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostic 3:650–670

    Article  CAS  Google Scholar 

  • Hooykaas PJJ (2004) Transformation mediated by Agrobacterium tumefaciens. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, pp 41–65

    Chapter  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Deng W, Guo E et al (2012) Mesoporous silica nanoparticle-stabilized and manganese-modified rhodium nanoparticles as catalysts for highly selective synthesis of ethanol and acetaldehyde from syngas. Chem Cat Chem 4:674–680

    CAS  Google Scholar 

  • Iida A, Seki M, Kamada M et al (1990) Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor Appl Genet 80:813–816

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Iriti M, Varoni EM (2015) Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22:2935–2944

    Article  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S (1996) High efficiency transformation of maize (Zea mayz L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 4:745–750

    Article  Google Scholar 

  • Ismagul A, Yang N, Maltseva E et al (2018) A biolistic method for high throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18(1):135. https://doi.org/10.1186/s12870-018-1326-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardinaud MF, Souvré A, Beckert M et al (1995) Optimisation of DNA transfer and transient β-glucuronidase expression in electroporated maize (Zea mays L.) microspores. Plant Cell Rep 15:55. https://doi.org/10.1007/BF01690253

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Ding L, He B et al (2014) Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale 6(17):9965–9969

    Article  CAS  PubMed  Google Scholar 

  • Jogdand SN (2006) Gene biotechnology. Himalaya Publishing House, Mumbai, pp 237–249

    Google Scholar 

  • Joldersma D, Liu Z (2018) Plant genetics enters the nano age? J Integr Plant Biol 60(6):446–447

    Article  PubMed  Google Scholar 

  • Kámán-Tóth E, Pogány M, Dankó T et al (2018) A simplified and efficient Agrobacterium tumefaciens electroporation method. 3Biotech 8(3):148. https://doi.org/10.1007/s13205-018-1171-9

    Article  Google Scholar 

  • Karimi M, Ghasemi A, Zangabad PS et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Kelly BA, Kado CI (2002) Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol Plant Pathol 3:125–134

    Article  CAS  PubMed  Google Scholar 

  • Keshamma E, Rohini S, Rao KS et al (2008) Tissue culture independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Kikkert JR (1993) The biolistic® PDS-1000/He device. Plant Cell Tissue Organ Cult 33:221–226

    Article  CAS  Google Scholar 

  • Klichko Y, Liong M, Choi E et al (2009) Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc 92:2–10

    Article  CAS  Google Scholar 

  • Komari T, Takakura Y, Ueki J et al (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343:15–41

    CAS  PubMed  Google Scholar 

  • Koop HU, Kofer W (1995) Plastid transformation by polyethylene glycol treatment of protoplasts and regeneration of transplastomic tobacco plants. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, New York, pp 75–82

    Chapter  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS et al (2004) Genetic transformation of the green alga – Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481

    Article  CAS  PubMed  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A et al (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  PubMed  Google Scholar 

  • Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Nyalosaso JL, Hwang AA et al (2011) Measurement of uptake and release capacities of mesoporous silica nanoparticles enabled by nanovalve gates. J Phys Chem C 115:19496–19506

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  PubMed  Google Scholar 

  • Lin X, Xie J, Niu G et al (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liong M, Lu J, Kovochich M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Kawabe A, Matsunaga S et al (2004) Obtaining transgenic plants using the bio-active beads method. J Plant Res 117(2):95–99

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang FH, Wang LL et al (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15(6):768–773

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Loh XJ, Lee TC, Dou Q et al (2016) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4(1):70–86

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang P, Zhang Z et al (2015) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674

    Article  CAS  PubMed  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17(7):996. https://doi.org/10.3390/ijms17070996

    Article  CAS  PubMed Central  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Sun W et al (2012a) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8(3):413–422

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY et al (2012b) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22(7):3576–3582

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    Article  CAS  PubMed  Google Scholar 

  • McHale M, Eamens AL, Finnegan EJ et al (2013) A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra S, Goyal V (2012) Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 168:1953–1975

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel et al (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    Article  CAS  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207. https://doi.org/10.1038/nplants.2016.207

    Article  CAS  PubMed  Google Scholar 

  • Moeller L, Wang K (2008) Engineering with precision: tools for the new generation of transgenic crops. Bioscience 58(5):391–401

    Article  Google Scholar 

  • Morikawa H, Iida A, Yamada Y (1989) Transient expression of foreign genes in plant cells and tissues obtained by a simple biolistic device (particle-gun). Appl Microbiol Biotechnol 31:320–322

    Article  CAS  Google Scholar 

  • Murry LE, Elliot LG, Capitant SA et al (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Biotechnology 11(13):1559–1564

    CAS  PubMed  Google Scholar 

  • Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44(7):469–478

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Maitra AN, Abdin MZ et al (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22:3500–3507

    Article  CAS  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I et al (1987) Hybrid genes in the analysis of transformation conditions. I: setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Negrutiu I, Dewulf J, Pietrzak M et al (1990) Hybrid genes in the analysis of transformation conditions. II: transient expression vs. stable transformation – analysis of parameters influencing gene expression levels and transformation efficiency. Physiol Plant 79:197–205

    Article  CAS  Google Scholar 

  • O’Brien JA, Lummis SCR (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11:66. https://doi.org/10.1186/1472-6750-11-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman GH, Aseem SK, Alreedy RM et al (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci Rep 5:18067. https://doi.org/10.1038/srep18067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  • Paoletti MG, Pimentel D (2000) Environmental risks of pesticides versus genetic engineering for agricultural pest control. J Agric Environ Ethics 12(3):279–303

    Article  Google Scholar 

  • Park IY, Kim IY, Yoo MK et al (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor mediated gene delivery. Int J Pharm 359:280–287

    Article  CAS  PubMed  Google Scholar 

  • Pasupathy K, Lin S, Hu Q et al (2008) Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnol J 3(8):1078–1082

    Article  CAS  PubMed  Google Scholar 

  • Patnaik G, Khurana P (2003) Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol 3:5. https://doi.org/10.1186/1471-2229-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavani C (2006) Development and characterisation of transgenics over expressing cry genes in field bean against Helicoverpa armigera (Hubner). MSc thesis, University of Agricultural Sciences, Bangalore, India, pp 1–99

    Google Scholar 

  • Pelczar P, Kalck V, Gomez D et al (2004) Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic TDNA complexes in mammalian cells. EMBO Rep 5:632–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piers KL, Heath JD, Liang X et al (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A (2013) Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci 4:519. https://doi.org/10.3389/fpls.2013.00519

    Article  PubMed  PubMed Central  Google Scholar 

  • Plackett ARG, Huang L, Sanders HL et al (2014) High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol 165:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter H, Heller R (2003) Transfection by electroporation. Curr Protoc Mol Biol 62(1):9.3.1–9.3.6. https://doi.org/10.1002/0471142727.mb0903s62

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Rai M, Deshmukh S, Gade A (2012) Strategic nanoparticle-mediated gene transfer in plants and animals – a novel approach. Curr Nanosci 8(1):170–179

    Article  CAS  Google Scholar 

  • Rao KS, Rohini VK (1999) Agrobacterium-mediated transformation of sunflower (Helianthus annus L.): a simple protocol. Ann Bot 83:347–354

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera AL, Gomez-Lim M, Fernandez F et al (2012) Physical methods for genetic plant transformation. Phys Life Rev 9(3):308–345

    Article  PubMed  Google Scholar 

  • Rohini VK, Rao KS (2000a) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000b) Transformation of peanut (Arachis hypogaea L.): a non–tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Mao HQ, Huang SK et al (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387–391

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    Article  CAS  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209

    Article  CAS  Google Scholar 

  • Seabra AB, Rai M, Durán N (2015) Emerging role of nanocarriers in delivery of nitric oxide for sustainable agriculture. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 183–207

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Shchipunov YA, Burtseva YV, Karpenko TY et al (2006) Highly efficient immobilization of endo-1,3-beta-D-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J Mol Catal 40:16–23

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D et al (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as a carrier for nucleic acid into cells. Angew Chem Int Ed Eng 47(8):1382–1395

    Article  CAS  Google Scholar 

  • Sooyeon K, Singh RK, Wojciech C (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:1–35

    Google Scholar 

  • Southgate EM, Davey MR, Power JB et al (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651

    Article  CAS  PubMed  Google Scholar 

  • Sparks CA, Jones HD (2014) Genetic transformation of wheat via particle bombardment. In: Henry JR, Furtado A (eds) Cereal genomics: methods and protocols. Humana Press, Totowa, pp 201–218

    Chapter  Google Scholar 

  • Srilatha J (2011) Nanotechnology in agriculture. Nanomed Nanotechnol 2:7. https://doi.org/10.4172/2157-7439.1000123

    Article  Google Scholar 

  • Sun Q (2018) Starch nanoparticles. In: Sjoo M, Nilsson L (eds) Starch in food: structure, function and applications. Woodhead Publishing, Cambridge, pp 691–745

    Chapter  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  CAS  PubMed  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW et al (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1. https://doi.org/10.4172/2325-9655.1000101

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tourne-Peteilh C, Begu S, Lerner DA et al (2012) Sol-gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. J Solgel Sci Technol 61:455–462

    Article  CAS  Google Scholar 

  • Trewyn BG, Slowing II, Giri S et al (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the Sol–Gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  CAS  PubMed  Google Scholar 

  • Truong-Le VL, Walsh SM, Schwabert E et al (1999) Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 361:47–56

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM et al (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20(15):2416–2423

    Article  CAS  Google Scholar 

  • Wang Q, Chen J, Zhang H et al (2011) Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11(3):2208–2214

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zhao FJ et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  CAS  PubMed  Google Scholar 

  • Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63(4):988–992

    Article  CAS  Google Scholar 

  • Yu-Qin F, Lu-Hua L, Pi-Wu W et al (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676

    Google Scholar 

  • Zaenen I, Van Larebeke N, Van Montagu M et al (1974) Supercoiled circular DNA in crown gall-inducing Agrobacterium strains. J Mol Biol 86(1):109–127

    Article  CAS  PubMed  Google Scholar 

  • Zambryski P, Joos H, Genetello C et al (1983) Ti-plasmid vector for the introduction of DNA into plant-cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Meng Z, Wang Y et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang Y, Hu T et al (2018) Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. Int J Biol Macromol 120(A):203–212

    Article  CAS  PubMed  Google Scholar 

  • Zupan JR, Zambryski PC (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sangeetha, J. et al. (2019). Nanoparticle-Mediated Plant Gene Transfer for Precision Farming and Sustainable Agriculture. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_14

Download citation

Publish with us

Policies and ethics