Skip to main content

Nanotechnology in Agriculture

  • Chapter
  • First Online:

Abstract

Agricultural productivity is maintained by the heavy use of chemical fertilizers and pesticides. However, this has been demonstrated to have serious environmental impact with life-threatening effect to humans. This demands the need to upgrade the agricultural practices with safe and most effective technologies which focuses on improved agricultural production with minimal ill effect to the environment and humans. Here comes the importance of application of nanotechnology in agriculture and its promises to accelerate the sustainable agriculture. These involve the development of nano-formulations of agrochemicals for enhanced crop yield and protection and exploring the possibilities of nanoparticles as effective alternative to the agrochemicals. Hence the current book chapter describes the application of various nanoparticles in agricultural field for better yield and productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams F, Van Vaeck L, Barrett R (2005) Advanced analytical techniques: platform for nano materials science. Spectrochim Acta B At Spectrosc 60(1):13–26

    Article  CAS  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    Article  CAS  PubMed  Google Scholar 

  • Astruc (2012) Electron transfer processes in dendrimers and their implication in biology, catalysis, sensing and nano technology. Nat Chem 4(4):255–267

    Article  CAS  PubMed  Google Scholar 

  • Babu SS, Mathew S, Kalarikkal N, Thomas S, Radhakrishnan EK (2016) Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε- caprolactone)/cloisite 30B thin films. 3 Biotech 6:19

    Article  Google Scholar 

  • Bacc H, Hajo JP, Lee Kim SJ, Shuler ML (2006) Antibody-based surface Plasmon resonance detection of intact viral pathogen Biotechnol. Bioengineering 94(4):815–819

    Google Scholar 

  • Bakalova R, Zhelev Z, Ohba H, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1136

    Article  CAS  PubMed  Google Scholar 

  • Bansod S, Bawskar M, Rai M (2015) In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol 9:239–245

    Article  PubMed  Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47(1):160–164

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319. https://doi.org/10.1007/978-3-31942990-815

    Chapter  Google Scholar 

  • Binupriya AR, Sathishkumarb M, Vijayaraghavanb K, Yuna S-I (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Article  CAS  PubMed  Google Scholar 

  • Bonnell DA, and Huey BD (2001) Basic principles of scanning probe microscopy in scanning probe microscopy and spectroscopy: theory, techniques, and applications, ed. D.A. Bonnell (New York: Wiley-VCH). 123 (39): 9725–9725

    Google Scholar 

  • Bulovic V, Mandell A, Perlman A (2004) Molecular memory device. US 20050116256 A1

    Google Scholar 

  • Chamani E, Ghalehtaki SK, Mohebodini M, Ghanbri A (2015) Iranian Journal of Genetics and. Plant Breed 4:11–19

    Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snowpea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci 2:203–212

    CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Dengetal Y (2012) Fullerene enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323

    Article  CAS  Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91

    Article  CAS  Google Scholar 

  • Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • De-Lugue A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017) Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem 65:8552–8559

    Article  CAS  PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elibol OH et al (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(22):4613–4615

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandha Ramakrishnan C (2012) Nano encapsulation techniques for food bioactive components: a Review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • Faizal H, Abbasi BH, Ahmad N, Ali M (2016) Integrated nanoscale silicon sensors using top-down fabrication. Appl Biochem Biotechnol 180:1076–1092

    Article  CAS  Google Scholar 

  • Fogel R, Limson J (2016) Developing biosensors in developing countries: South Africa as a case study. Biosensors 6:5

    Article  PubMed Central  CAS  Google Scholar 

  • Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):1–5

    Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol 3:153–159

    Article  CAS  Google Scholar 

  • Gayathri KV, Vasudevan N (2010) Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment. J Bioremed Biodegr 1:104

    Google Scholar 

  • Ghormade V, Deshpande MV, Panikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gibney E (2015) Buckyballs in space solve 100-year-old riddle. Nat News. https://doi.org/10.1038/nature.2015.17987

  • Gouin S (2004) Micro encapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Gutiérrez JM, González C, Maestro A, Solè IMPC, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of ‘in vitro’ cultures and organogenic regeneration of banana. Aust J Crop Sci 8(4):612

    Google Scholar 

  • Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L et al (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48:703–709. https://doi.org/10.1016/j.plaphy.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide 2,4 dichlorophenoxyacetate incapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962

    Article  CAS  Google Scholar 

  • Jacobson AR, McBride MB, Baveye P, Steenhuis TS (2005) Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci Total Environ 345:191–205. https://doi.org/10.1016/j.scitotenv.2004.10.02769

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    Article  CAS  PubMed  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    Article  PubMed  CAS  Google Scholar 

  • Jose A, Radhakrishnan EK (2018) Applications of nanomaterials in agriculture and food industry. In: Green and sustainable advanced materials: applications, vol 2. Wiley, Hoboken, pp 343–375

    Chapter  Google Scholar 

  • Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol Mol Biol 11:1–16

    CAS  Google Scholar 

  • Kandasamy S, Sorna Prema R (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Kannan N, Rajendran V, Yuvakkumar R, Karunakaran G, Kavitha K, Suriyaprabha R (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137

    Article  PubMed  CAS  Google Scholar 

  • Kataria S, Jain M, Rastogi A, Živčák M, Brestic M, Liu S, Tripathi DK (2019) Role of nanoparticles on photosynthesis: avenues and applications. In: Nanomaterials in Plants, Algae and Microorganisms, pp 103–127

    Chapter  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. http://dx.doi.org/10.1016/j.arabjc.2017.05.011

  • Kharissova OV, Dias HVR, Kharisov BI, Pe’rez BO, Pe’rez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    Article  CAS  PubMed  Google Scholar 

  • Khot LR et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Khota LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 165(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclair C, Spurgeon D, Tiede K, Van den Brink PJ (2014) Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ (2017) Urea-Hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140

    Article  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species In Vitro and pepper anthracnose disease in field. Mycobiology 39:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Lin BG, VS Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78(3):835–843

    Article  CAS  PubMed  Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco Noles E, Cambra M, Bertolini E (2009) Are Molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    CAS  PubMed  Google Scholar 

  • Mc Loughlin KS (2011) Microarrays for pathogen detection and analysis. Brief Funct Genomics 10:342–353

    Article  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164(2):537–547

    Article  CAS  PubMed  Google Scholar 

  • Mingfang Q, Yufeng L, Tianlai L (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress, biological trace element research. Biol Trace Elem Res 156(1):323–328

    Google Scholar 

  • Mir SA, Shah MA, Mir MM, Iqbal U (2017) New horizons of nanotechnology in agriculture and food processing industry. In: Integrating Biologically-Inspired Nanotechnology into Medical Practice, pp 230–258

    Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh A, Keswani C, Singh HB (2014) Nanotechnology: exploring potential application in agriculture and its opportunities and constraints. Biotech Today 4:9–14. https://doi.org/10.5958/2322-0996.2014.00011.8

    Article  Google Scholar 

  • Moharrer S, Mohammad B, Gharamohammad RA, Yargol M (2012) Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J Sci Technol 5:2443–24447

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Manvi FV (2011) Design and characterization of nanocrystals of lovastatin for solubility and dissolution enhancement. J Nanomed Nanotechnol 2:107

    Article  CAS  Google Scholar 

  • Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iran J Biotechnol 8:61

    Google Scholar 

  • Neethirajan S, Freund MS, Jayas DS, Shafai C, Thomson DJ, White NDG (2010) Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng 106(4):395–404

    Article  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4(110):64985–64993

    Article  CAS  Google Scholar 

  • Órdenes-Aenishanslins NA, Saona LA, Durán-Toro VM, Monrás JP, Bravo DM, Pérez-Donoso JM (2014) Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Factories 13:90

    Google Scholar 

  • Ozdemir M, Kemerli T (2016) Innovative applications of micro and nano encapsulation in food packaging. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Wiley, Chichester

    Google Scholar 

  • Pandey RR, Saini KK, Dhayal M (2010) Using nano-arrayed structures in sol gel derived Mn2+ doped Tio2 for high sensitivity urea biosensor. J Biosens Bioelectr 1:001–004

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles - The next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 5:463–485

    CAS  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautham KH (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84

    Google Scholar 

  • Perlatti B, de Souza Bergo PL, Fernandes da Silva MF d G, Batista J, Rossi M (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides – development of safer and more effective technologies. INTECH, Rijeka

    Google Scholar 

  • Pohlmann R, Beck RCR, Lionzo MIZ, Coasta TMH, Benvenutti EV, Re MI et al (2008) Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system. Braz J Chem Eng 25:389–398

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM, Hossain F (2007) Nanotechnology in agriculture. ICAR National Fellow Division of Genetics IARI, New Delhi

    Google Scholar 

  • Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Metal nanoparticles in microbiology, pp 1–14

    Chapter  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 03:315–324

    Article  CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  PubMed  CAS  Google Scholar 

  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2003) Precision agriculture: changing the face of farming. Geotimes November 2003. http://www.geotimes.org/nov03/featureagrichtml#author

  • Robinson DKR, Zadrazilova GS (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working paper version, pp 285–297

    Google Scholar 

  • Rodriguez J, Martin MJ, Ruiz MA, Clares B (2016) Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int 83:41–59

    Article  CAS  Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Salim N, Basri M, Abd. Rahman MB, Abdullah DK, Basri H et al (2011) Phase behaviour, formation and characterization of palm-based esters nanoemulsion formulation containing ibu protein. J Nanomed Nanotechnol 2(4):2157–7439

    Google Scholar 

  • Sanchez-Mendieta V, Vilchis-Nestor AR (2012) Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts. In: Yen-Hsun S (ed) Noble metals. INTECH, Rijeka, pp 391–408

    Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies, pp 1–39

    Google Scholar 

  • Saurabh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5

    Article  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520. https://doi.org/10.1016/j.chemosphere.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  • Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18. https://doi.org/10.1089/ind.2013.1555

    Article  Google Scholar 

  • Sertova MN (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16(2):117–130

    Article  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12

    Article  Google Scholar 

  • Seaman C, Bricklebank N (2011) Soil-free farming. Chem Ind Mag:19–21

    Google Scholar 

  • Shakeran Z, Keyhanfar M, Asghari G, Ghanadian M (2015) Turk. J Biol 39:111–118

    CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Shcharbin DG, Klajnert B, Bryszewska M (2009) Dendrimers in gene transfection. Biochem Mosc 74(10):1070–1079

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh M, Agrovel VV, Kumar A (2010) An attempt to develop surface Plasmon resonance based immunosensors for karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Filims 519:1156–1159

    Article  CAS  Google Scholar 

  • Singh S et al (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5

    Article  Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Perez-sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207

    Article  CAS  Google Scholar 

  • Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64:3778–3788

    Article  CAS  PubMed  Google Scholar 

  • Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Takefumi S, Nagamori E, Ikeuchi T (2002) A novel gene delivery system in plants with calcium alginate micro-beads. J Biosci Bioeng 94(1):87–91

    Article  Google Scholar 

  • Taghizadeh M, Solgi M (2014) The application of essential oils and silver nanoparticles for sterilization of bermudagrass explants in in vitro culture. International Journal of Horticultural Science and Technology 1(2):131–140

    CAS  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of'nano-technology'. In: Proceedings of the international conference on production engineering, 1974–8; 2, pp 18–23

    Google Scholar 

  • Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul RK (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4:1–5

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tarafdar JC, Xiang Y, Wang WN, Dong Q, Biswas P (2012c) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144

    Google Scholar 

  • Thomas R, Jasim B, Mathew J, Radhakrishnan EK (2012) Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomed Eng 4:183–187

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Tothill I (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4(4):361–374

    Article  CAS  Google Scholar 

  • Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. https://doi.org/10.1016/j.coche.2011.12.002

    Article  CAS  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16

    Article  PubMed  Google Scholar 

  • Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22:3–20

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wang Z, Wei FSY, Xu Q, Huang JY, Dong XY, Iua JH, Yang Q, Zhao YD, Chea H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticle-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GHM (2008) Nanomaterials in soils. Geoderma 146(1–2):291–302

    Article  CAS  Google Scholar 

  • Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  CAS  Google Scholar 

  • Yi Z, Hussain HI, Feng C, Sun D, She F, Rookes JE, Cahill DM, Kong L (2015) Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces 7(18):9937–9946

    Article  CAS  PubMed  Google Scholar 

  • Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49(3):299–307

    Article  Google Scholar 

  • Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA, Khan SA (2015) Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63:6876–6882

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhenge LP, Li WY, Wang JW (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. J Curr Nanosci 9:363–370

    Article  CAS  Google Scholar 

  • Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL, Wang H (2016) Facet control of gold nanorods. ACS Nano 10(2):2960–2974

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:083–092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saranya, S., Aswani, R., Remakanthan, A., Radhakrishnan, E.K. (2019). Nanotechnology in Agriculture. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_1

Download citation

Publish with us

Policies and ethics