Skip to main content

Synaptic Localisation of Tau

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

The microtubule-associated protein tau has been identified in several intraneuronal compartments, including in association with synapses. In Alzheimer’s disease, frontotemporal dementia and related tauopathies, highly phosphorylated tau accumulates as intraneuronal protein aggregates that are likely responsible for the demise of neurons and the subsequent progressive cognitive decline. However, the molecular mechanisms underlying such tau-mediated damage in the tauopathies is not fully understood. Tauopathy induces loss of synapses, which is one of the earliest structural correlates of cognitive dysfunction and disease progression. Notably, altered post-translational modifications of tau, including increased phosphorylation and acetylation, augment the mislocalisation of tau to synapses, impair synaptic vesicle release and might influence the activity-dependent release of tau from neurons. Thus, disease-associated accumulation of modified tau at the synapse adversely affects critical neuronal processes that are linked to neuronal activity and synaptic function. These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catterall WA, Few AP. Calcium channel regulation and presynaptic plasticity. Neuron. 2008;59(6):882–901.

    Article  CAS  PubMed  Google Scholar 

  2. Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. 2011;3(12): a005678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.

    Article  CAS  PubMed  Google Scholar 

  5. Tatavarty V, Sun Q, Turrigiano GG. How to scale down postsynaptic strength. J Neurosci. 2013;33(32):13179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–80.

    Article  CAS  PubMed  Google Scholar 

  7. Masliah E, Hansen L, Albright T, Mallory M, Terry RD. Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol. 1991;81(4):428–33.

    Article  CAS  PubMed  Google Scholar 

  8. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27(10):1372–84.

    Article  CAS  PubMed  Google Scholar 

  9. Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101:1371–8.

    Article  CAS  PubMed  Google Scholar 

  10. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133(5):665–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maas T, Eidenmuller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem. 2000;275(21):15733–40.

    Article  CAS  PubMed  Google Scholar 

  12. Pooler AM, Noble W, Hanger DP. A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology. 2014;76(Pt A):1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson RJ, Rudinskiy N, Herrmann AG, Croft S, Kim JM, Petrova V, et al. Human tau increases amyloid beta plaque size but not amyloid beta-mediated synapse loss in a novel mouse model of Alzheimer’s disease. Eur J Neurosci. 2016;44(12):3056–66.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, et al. Tau impairs neural circuits, dominating amyloid-beta effects, in Alzheimer models in vivo. Nat Neurosci. 2019;22(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  15. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Zhou Z, Zhang L, Wang Y, Zhang YW, Zhong M, et al. Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF. Neurochem Int. 2012;60(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  17. Jadhav S, Cubinkova V, Zimova I, Brezovakova V, Madari A, Cigankova V, et al. Tau-mediated synaptic damage in Alzheimer’s disease. Transl Neurosci. 2015;6(1):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada-Kakuda S, Takashima A, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527(5):985–98.

    Article  CAS  PubMed  Google Scholar 

  19. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sokolow S, Henkins KM, Bilousova T, Gonzalez B, Vinters HV, Miller CA, et al. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem. 2015;133(3):368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dejanovic B, Huntley MA, De Maziere A, Meilandt WJ, Wu T, Srinivasan K, et al. Changes in the synaptic proteome in Tauopathy and Rescue of tau-Induced Synapse Loss by C1q antibodies. Neuron. 2018;100(6):1322–36 e7.

    Article  CAS  PubMed  Google Scholar 

  22. Ji C, Tang M, Zeidler C, Hohfeld J, Johnson GV. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/tau degradation via autophagy in neuronal processes. Autophagy. 2019;15(7):1199–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahara N, Murayama M, Higuchi M, Suhara T, Takashima A. Biochemical distribution of tau protein in Synaptosomal fraction of transgenic mice expressing human P301L tau. Front Neurol. 2014;5:26.

    PubMed  PubMed Central  Google Scholar 

  24. Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8:15295.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pickett EK, Henstridge CM, Allison E, Pitstick R, Pooler A, Wegmann S, et al. Spread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early Alzheimer’s disease. Synapse. 2017;71(6).

    Article  PubMed Central  CAS  Google Scholar 

  26. Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121(2):171–81.

    Article  PubMed  Google Scholar 

  27. DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci. 2018;12:267.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, et al. Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol. 2008;172(6):1683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henkins KM, Sokolow S, Miller CA, Vinters HV, Poon WW, Cornwell LB, et al. Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer’s cortical synapses. Brain Pathol. 2012;22(6):826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181(4):1426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51.

    Article  CAS  PubMed  Google Scholar 

  33. McInnes J, Wierda K, Snellinx A, Bounti L, Wang YC, Stancu IC, et al. Synaptogyrin-3 mediates presynaptic dysfunction induced by tau. Neuron. 2018;97(4):823–35.

    Article  CAS  PubMed  Google Scholar 

  34. Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I, et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 2013;136(Pt 8):2510–2526.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tai HC, Wang BY, Serrano-Pozo A, Frosch MP, Spires-Jones TL, Hyman BT. Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:146.

    PubMed  PubMed Central  Google Scholar 

  36. Kowall NW, Kosik KS. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol. 1987;22:639–43.

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Song X, Nisbet R, Götz J. Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N tau in disease. J Biol Chem. 2016;291(15):8173–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cabrales Fontela Y, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein tau. Nat Commun. 2017;8(1):1981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G. Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci. 1998;111(21):3167–77.

    CAS  PubMed  Google Scholar 

  41. Bhaskar K, Yen SH, Lee G. Disease-related modifications in tau affect the interaction between Fyn and tau. J Biol Chem. 2005;280(42):35119–25.

    Article  CAS  PubMed  Google Scholar 

  42. Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen P, Anderton B, et al. Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J. 2011;278(16):2927–37.

    Article  CAS  PubMed  Google Scholar 

  43. Lau DH, Hogseth M, Phillips EC, O’Neill MJ, Pooler AM, Noble W, et al. Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4(1):49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ittner LM, Gotz J. Amyloid-beta and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci. 2011;12(2):65–72.

    Article  CAS  PubMed  Google Scholar 

  45. Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. J Biol Chem. 2008;283(26):18177–86.

    Article  CAS  PubMed  Google Scholar 

  46. Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiol Aging. 2012;33(2):431.e27–38.

    Article  CAS  Google Scholar 

  47. Xia D, Li C, Götz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim Biophys Acta. 2015;1852(5):913–24.

    Article  CAS  PubMed  Google Scholar 

  48. Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I, et al. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci. 2014;34(17):6084–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tracy TE, Gan L. Acetylated tau in Alzheimer’s disease: an instigator of synaptic dysfunction underlying memory loss: increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. BioEssays. 2017;39(4).

    Article  CAS  Google Scholar 

  50. Rodriguez-Rodriguez E, Infante J, Llorca J, Mateo I, Sanchez-Quintana C, Garcia-Gorostiaga I, et al. Age-dependent association of KIBRA genetic variation and Alzheimer’s disease risk. Neurobiol Aging. 2009;30(2):322–4.

    Article  CAS  PubMed  Google Scholar 

  51. Tracy TE, Sohn PD, Minami SS, Wang C, Min SW, Li Y, et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes Tauopathy-related memory loss. Neuron. 2016;90(2):245–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shrivastava AN, Redeker V, Pieri L, Bousset L, Renner M, Madiona K, et al. Clustering of tau fibrils impairs the synaptic composition of alpha3-Na(+)/K(+)-ATPase and AMPA receptors. EMBO J. 2019;38:e99871.

    Google Scholar 

  53. Moussaud S, Jones DR, Moussaud-Lamodiere EL, Delenclos M, Ross OA, McLean PJ. Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener. 2014;9:43.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miller EC, Teravskis PJ, Dummer BW, Zhao X, Huganir RL, Liao D. Tau phosphorylation and tau mislocalization mediate soluble Abeta oligomer-induced AMPA glutamate receptor signaling deficits. Eur J Neurosci. 2014;39(7):1214–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kopeikina KJ, Polydoro M, Tai HC, Yaeger E, Carlson GA, Pitstick R, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521(6):1334–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bolos M, Pallas-Bazarra N, Terreros-Roncal J, Perea JR, Jurado-Arjona J, Avila J, et al. Soluble tau has devastating effects on the structural plasticity of hippocampal granule neurons. Transl Psychiatry. 2017;7(12):1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jurado S. AMPA receptor trafficking in natural and pathological aging. Front Mol Neurosci. 2017;10:446.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahs K, Ramsden M, et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat Med. 2016;22(11):1268–76.

    Article  CAS  PubMed  Google Scholar 

  59. Ondrejcak T, Klyubin I, Corbett GT, Fraser G, Hong W, Mably AJ, et al. Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J Neurosci. 2018;38(50):10595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Angulo SL, Orman R, Neymotin SA, Liu L, Buitrago L, Cepeda-Prado E, et al. Tau and amyloid-related pathologies in the entorhinal cortex have divergent effects in the hippocampal circuit. Neurobiol Dis. 2017;108:261–76.

    Article  CAS  PubMed  Google Scholar 

  61. Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Das M, Maeda S, Hu B, Yu GQ, Guo W, Lopez I, et al. Neuronal levels and sequence of tau modulate the power of brain rhythms. Neurobiol Dis. 2018;117:181–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sen A, Capelli V, Husain M. Cognition and dementia in older patients with epilepsy. Brain. 2018;141(6):1592–608.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14(4):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, et al. Neuronal activity regulates extracellular tau in vivo. J Exp Med. 2014;211(3):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19(8):1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Croft CL, Wade MA, Kurbatskaya K, Mastrandreas P, Hughes MM, Phillips EC, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8(3):e2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by Alzheimer’s Research UK, the Alzheimer’s Society, and the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane P. Hanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanger, D.P., Goniotaki, D., Noble, W. (2019). Synaptic Localisation of Tau. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_9

Download citation

Publish with us

Policies and ethics