Skip to main content

Mechanisms of Axonal Sorting of Tau and Influence of the Axon Initial Segment on Tau Cell Polarity

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

Tau is a microtubule-associated protein (MAP) that is mainly sorted into the axons in physiological conditions, but missorted in Alzheimer Disease and related tauopathies. The mechanism(s) of axonal targeting of Tau protein are still a matter of debate. Several possibilities for the axonal localization of Tau protein have been proposed: (1) Targeting of Tau mRNA into axons which is then translated locally. (2) Preferred axonal translation of Tau mRNA. (3) Specific dendritic degradation of Tau protein. (4) Active axonal sorting of somatically translated Tau protein. (5) Axonal retention of Tau protein by specific association of Tau protein with axonal structures, namely particularly modified microtubules. (6) Restriction of Tau diffusion by a selective filter function of the Axon Initial Segment (AIS). In our research we focused on the Tau Diffusion Barrier (TDB), located within the AIS, which controls anterograde and retrograde propagation of Tau. It shows both sensitivity to size of the Tau protein isoforms, and to disruption of the molecular structure of the AIS. Here, we review proposed mechanisms of axonal targeting of Tau and potential influences of the TDB/AIS on the subcellular distribution of Tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreadis A. Tau splicing and the intricacies of dementia. J Cell Physiol. 2012;227:1220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aronov S, Aranda G, Behar L, Ginzburg I. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J Neurosci. 2001;21:6577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balaji V, Kaniyappan S, Mandelkow E, Wang Y, Mandelkow EM. Pathological missorting of endogenous MAPT/Tau in neurons caused by failure of protein degradation systems. Autophagy. 2018;14(12):2139–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bender KJ, Trussell LO. The physiology of the axon initial segment. Annu Rev Neurosci. 2012;35:249–65.

    Article  CAS  PubMed  Google Scholar 

  5. Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101:1371–8.

    CAS  PubMed  Google Scholar 

  6. Buffington SA, Rasband MN. The axon initial segment in nervous system disease and injury. Eur J Neurosci. 2011;34:1609–19.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid cue-specific remodeling of the nascent axonal proteome. Neuron. 2018;99:29–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol. 2013;4:1–12.

    Article  Google Scholar 

  9. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AM, et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci. 2006;26:6985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol. 1986;103:2739–46.

    Article  CAS  PubMed  Google Scholar 

  11. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26.

    Article  CAS  PubMed  Google Scholar 

  12. Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature. 2010;465:1070–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gumy LF, Hoogenraad CC. Local mechanisms regulating selective cargo entry and long-range trafficking in axons. Curr Opin Neurobiol. 2018;51:23–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hatch RJ, Wei Y, Xia D, Götz J. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathol. 2017;133:717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayashi K, Suzuki A, Ohno S. PAR-1/MARK: a kinase essential for maintaining the dynamic state of microtubules. Cell Struct Funct. 2011;37:21–5.

    Article  PubMed  Google Scholar 

  16. Hedstrom KL, Ogawa Y, Rasband MN. AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol. 2008;183:635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol. 1996;132:667–79.

    Article  CAS  PubMed  Google Scholar 

  18. Ittner L, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.

    Article  CAS  PubMed  Google Scholar 

  19. Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010;33:362–72.

    Article  CAS  PubMed  Google Scholar 

  20. Janning D, Igaev M, Sundermann F, Bruhmann J, Beutel O, Heinisch J, Bakota L, Piehler J, Junge W, Brandt R. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol Biol Cell. 2014;25:3541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jones SL, Korobova F, Svitkina T. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. J Cell Biol. 2014;205:67–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanai Y, Hirokawa N. Sorting mechanisms of tau and MAP 2 in neurons: suppressed axonal transit of MAP 2 and locally regulated microtubule binding. Neuron. 1995;14:421–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kishi M, Pan YA, Crump JG, Sanes JR. Mammalian SAD kinases are required for neuronal polarization. Science. 2005;307:929–32.

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi T, Storrie B, Simons K, Dotti CG. A functional barrier to movement of lipids in polarized neurons. Nature. 1992;359:647–50.

    Article  CAS  PubMed  Google Scholar 

  25. Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E. Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J Neurosci. 2007;27:9916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta. 2005;1739:298–310.

    Article  CAS  PubMed  Google Scholar 

  27. Kosik KS, Crandall JE, Mufson EJ, Neve RL. Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment. Ann Neurol. 1989;26:352–61.

    Article  CAS  PubMed  Google Scholar 

  28. Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol. 2013;105:49–59.

    Article  CAS  PubMed  Google Scholar 

  29. Leterrier C. The axon initial segment: an updated viewpoint. J Neurosci. 2018;38(9):2135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leterrier C, Vacher H, Fache MP, d’Ortoli SA, Castets F, Autillo-Touati A, Dargent B. End-binding proteins EB3 and EB1 link microtubules to Ankyrin G in the axon initial segment. Proc Natl Acad Sci U S A. 2011;108:8826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 2011;30:4825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Litman P, Barg J, Rindzoonski L, Ginzburg I. Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron. 1993;10:627–38.

    Article  CAS  PubMed  Google Scholar 

  33. Magiera MM, Singh P, Gadadhar S, Janke C. Tubulin posttranslational modifications and emerging links to human disease. Cell. 2018;173:1323–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mandell JW, Banker GA. The microtubule cytoskeleton and the development of neuronal polarity. Neurobiol Aging. 1995;16:229–38.

    Article  CAS  PubMed  Google Scholar 

  35. McInnes J, Wierda K, Snellinx A, Bounti L, Wang YC, Stancu IC, Apostolo N, Gevaert K, Dewachter I, Spires-Jones TL, De Strooper B, De Wit J, Zhou L, Verstreken P. Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau. Neuron. 2018;97:823–35.

    Article  CAS  PubMed  Google Scholar 

  36. Mercken M, Fischer I, Kosik KS, Nixon RA. Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. J Neurosci. 1995;15:8259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morita T, Sobue K. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J Biol Chem. 2009;284:27734–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 2009;7:e34.

    Article  PubMed  CAS  Google Scholar 

  39. Nakata T, Hirokawa N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol. 2003;162:1045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 1986;387:271–80.

    CAS  PubMed  Google Scholar 

  41. Palay SL, Sotelo C, Peters A, Orkand PM. The axon hillock and the initial segment. J Cell Biol. 1968;38:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quinn JP, Corbett NJ, Kellett KAB, Hooper NM. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J Alzheimers Dis. 2018;63(1):1–21.

    Article  CAS  Google Scholar 

  43. Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci. 2010;11:552–62.

    Article  CAS  PubMed  Google Scholar 

  44. Santuccione AC, Merlini M, Shetty A, Tackenberg C, Bali J, Ferretti MT, McAfoose J, Kulic L, Bernreuther C, Welt T, et al. Active vaccination with Ankyrin G reduces β-amyloid pathology in APP transgenic mice. Mol Psychiatry. 2013;18:358–68.

    Article  CAS  PubMed  Google Scholar 

  45. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry. 1999;38:3549–58.

    Article  CAS  PubMed  Google Scholar 

  46. Scholz T, Mandelkow E. Transport and diffusion of Tau protein in neurons. Cell Mol Life Sci. 2014;71:3139–50.

    Article  CAS  PubMed  Google Scholar 

  47. Sohn PD, Tracy TE, Son HI, Zhou Y, Leite REP, Miller BL, Seeley WW, Grinberg LT, Gan L. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener. 2016;11:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM. A selective filter for cytoplasmic transport at the axon initial segment. Cell. 2009;136:1148–60.

    Article  CAS  PubMed  Google Scholar 

  49. Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow EM, Mandelkow E, et al. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun. 2017;5:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tapia M, Del Puerto A, Puime A, Sanchez-Ponce D, Fronzaroli-Molinieres L, Pallas-Bazarra N, Carlier E, Giraud P, Debanne D, Wandosell F, et al. GSK3 and beta-catenin determines functional expression of sodium channels at the axon initial segment. Cell Mol Life Sci. 2013;70:105–20.

    Article  CAS  PubMed  Google Scholar 

  51. Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C, Luk C, Gibbs JR, Dillman A, Hernandez DG, et al. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet. 2012;21:4094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Den Bedem H, Kuhl E. Tau-ism: the Yin and Yang of microtubule sliding, detachment, and rupture. Biophys J. 2015;109:2215–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A. 2000;97:5129–34.

    Article  Google Scholar 

  54. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17:5–21.

    Article  CAS  PubMed  Google Scholar 

  55. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72:1858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winckler B, Forscher P, Mellman I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature. 1999;397:698–701.

    Article  CAS  PubMed  Google Scholar 

  57. Zempel H, Mandelkow E. Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. 2014;37:721–32.

    Article  CAS  PubMed  Google Scholar 

  58. Zempel H, Thies E, Mandelkow E, Mandelkow EM. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30:11938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM. Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 2013;32:2920–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow EM, Mandelkow E. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem. 2017;292:12192–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu LQ, Zheng HY, Peng CX, Liu D, Li HL, Wang Q, Wang JZ. Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2. J Neurosci. 2010;30:3839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cologne Fortune Program/Faculty of Medicine, University of Cologne (HZ) and the German Center for Neurodegenerative Diseases (DZNE) and CAESAR/Max-Planck-Society (MPG) (EM). We are grateful to Julia Lüdtke for excellent technical assistance and Dr. Eva-Maria Mandelkow for stimulating discussions throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Zempel or Eckhard Mandelkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zempel, H., Mandelkow, E. (2019). Mechanisms of Axonal Sorting of Tau and Influence of the Axon Initial Segment on Tau Cell Polarity. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_6

Download citation

Publish with us

Policies and ethics