Skip to main content

Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications

  • Chapter
  • First Online:
Tau Biology

Abstract

Although Tau is an intrinsically disordered protein, some level of structure can still be defined, corresponding to short stretches of dynamic secondary structures and a preferential global fold described as an ensemble of conformations. These structures can be modified by Tau phosphorylation, and potentially other post-translational modifications. The analytical capacity of Nuclear Magnetic Resonance (NMR) spectroscopy provides the advantage of offering a residue-specific view of these modifications, allowing to link specific sites to a particular structure. The cis or trans conformation of X-Proline peptide bonds is an additional characteristic parameter of Tau structure that is targeted and modified by prolyl cis/trans isomerases. The challenge in molecular characterization of Tau lies in being able to link structural parameters to functional consequences in normal functions and dysfunctions of Tau, including potential misfolding on the path to aggregation and/or perturbation of the interactions of Tau with its many molecular partners.

Graphical Abstract

Phosphorylation of Ser and Thr residues has the potential to impact the local and global structure of Tau

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja P, Cantrelle F-X, Huvent I, et al. Proline Conformation in a Functional Tau Fragment. J Mol Biol. 2016;428:79–91. https://doi.org/10.1016/j.jmb.2015.11.023.

    Article  CAS  PubMed  Google Scholar 

  2. Amniai L, Barbier P, Sillen A, et al. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 2009;23:1146–52. https://doi.org/10.1096/fj.08-121590.

    Article  CAS  PubMed  Google Scholar 

  3. Bibow S, Ozenne V, Biernat J, et al. Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau. J Am Chem Soc. 2011;133:15842–5. https://doi.org/10.1021/ja205836j.

    Article  CAS  PubMed  Google Scholar 

  4. Biernat J, Mandelkow EM, Schroter C, et al. The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J. 1992;11:1593–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101:1371–8.

    Article  CAS  PubMed  Google Scholar 

  6. Black MM, Slaughter T, Moshiach S, et al. Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci. 1996;16:3601–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bourré G, Cantrelle FX, Kamah A, et al. Direct Crosstalk Between O-GlcNAcylation and Phosphorylation of Tau Protein Investigated by NMR Spectroscopy. Front Endocrinol. 2018; 9:595. https://doi.org/10.3389/fendo.2018.00595.

  8. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Butner KA, Kirschner MW. Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol. 1991;115:717–30.

    Article  CAS  PubMed  Google Scholar 

  10. Chambraud B, Sardin E, Giustiniani J, et al. A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A. 2010;107:2658–63. https://doi.org/10.1073/pnas.0914957107.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Despres C, Byrne C, Qi H, et al. Identification of the Tau phosphorylation pattern that drives its aggregation. Proc Natl Acad Sci U S A. 2017;114:9080–5. https://doi.org/10.1073/pnas.1708448114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eichner T, Kutter S, Labeikovsky W, et al. Molecular Mechanism of Pin1-Tau Recognition and Catalysis. J Mol Biol. 2016;428:1760–75. https://doi.org/10.1016/j.jmb.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  13. Fischer D, Mukrasch MD, Biernat J, et al. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry. 2009;48:10047–55.

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick AWP, Falcon B, He S, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–90. https://doi.org/10.1038/nature23002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gandhi NS, Landrieu I, Byrne C, et al. A phosphorylation-induced turn defines the Alzheimer’s disease AT8 antibody epitope on the Tau protein. Angew Chem Int Ed Engl. 2015;54:6819–23. https://doi.org/10.1002/anie.201501898.

    Article  CAS  PubMed  Google Scholar 

  16. Giustiniani J, Guillemeau K, Dounane O, et al. The FK506-binding protein FKBP52 in vitro induces aggregation of truncated Tau forms with prion-like behavior. FASEB J Off Publ Fed Am Soc Exp Biol. 2015;29:3171–81. https://doi.org/10.1096/fj.14-268243.

    Article  CAS  Google Scholar 

  17. Goedert M, Spillantini MG, Jakes R, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26.. doi: 0896-6273(89)90210-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Goode BL, Feinstein SC. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol. 1994;124:769–82.

    Article  CAS  PubMed  Google Scholar 

  19. Himmler A, Drechsel D, Kirschner MW, Martin DW Jr. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol. 1989;9:1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81. https://doi.org/10.1016/j.neuron.2010.11.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeganathan S, von Bergen M, Brutlach H, et al. Global hairpin folding of tau in solution. Biochemistry. 2006;45:2283–93. https://doi.org/10.1021/bi0521543.

    Article  CAS  PubMed  Google Scholar 

  22. Jeganathan S, Hascher A, Chinnathambi S, et al. Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem. 2008;283:32066–76. https://doi.org/10.1074/jbc.M805300200.

    Article  CAS  PubMed  Google Scholar 

  23. Kamah A, Huvent I, Cantrelle F-X, et al. Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein. Biochemistry. 2014;53:3020–32. https://doi.org/10.1021/bi500006v.

    Article  CAS  PubMed  Google Scholar 

  24. Kamah A, Cantrelle FX, Huvent I, et al. Isomerization and Oligomerization of Truncated and Mutated Tau Forms by FKBP52 are Independent Processes. J Mol Biol. 2016;428:1080–90. https://doi.org/10.1016/j.jmb.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  25. Katsinelos T, Zeitler M, Dimou E, et al. Unconventional Secretion Mediates the Trans-cellular Spreading of Tau. Cell Rep. 2018;23:2039–55. https://doi.org/10.1016/j.celrep.2018.04.056.

    Article  CAS  PubMed  Google Scholar 

  26. Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523:431–6. https://doi.org/10.1038/nature14658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kutter S, Eichner T, Deaconescu AM, Kern D. Regulation of Microtubule Assembly by Tau and not by Pin1. J Mol Biol. 2016;428:1742–59. https://doi.org/10.1016/j.jmb.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  28. Landrieu I, Lacosse L, Leroy A, et al. NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc. 2006;128:3575–83. https://doi.org/10.1021/ja054656+.

    Article  CAS  PubMed  Google Scholar 

  29. Liou YC, Sun A, Ryo A, et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 2003;424:556–61.

    Article  CAS  PubMed  Google Scholar 

  30. Lippens G, Wieruszeski JM, Leroy A, et al. Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Chembiochem. 2004;5:73–8. https://doi.org/10.1002/cbic.200300763.

    Article  CAS  PubMed  Google Scholar 

  31. Lu PJ, Wulf G, Zhou XZ, et al. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature. 1999;399:784–8.

    Article  CAS  PubMed  Google Scholar 

  32. Malia TJ, Teplyakov A, Ernst R, et al. Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins. 2016;84:427–34. https://doi.org/10.1002/prot.24988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukrasch MD, Markwick P, Biernat J, et al. Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc. 2007;129:5235–43.

    Article  CAS  PubMed  Google Scholar 

  34. Mukrasch MD, Bibow S, Korukottu J, et al. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 2009;7:e34. https://doi.org/10.1371/journal.pbio.1000034.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura K, Greenwood A, Binder L, et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell. 2012;149:232–44. https://doi.org/10.1016/j.cell.2012.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schneider A, Biernat J, von Bergen M, et al. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry. 1999;38:3549–58.

    Article  CAS  PubMed  Google Scholar 

  37. Schwalbe M, Ozenne V, Bibow S, et al. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and alpha-synuclein in solution from NMR and small angle scattering. Structure. 2014;22:238–49. https://doi.org/10.1016/j.str.2013.10.020.

    Article  CAS  PubMed  Google Scholar 

  38. Schwalbe M, Kadavath H, Biernat J, et al. Structural Impact of Tau Phosphorylation at Threonine 231. Structure. 2015;23:1448–58. https://doi.org/10.1016/j.str.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  39. Sibille N, Huvent I, Fauquant C, et al. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Proteins. 2012;80:454–62. https://doi.org/10.1002/prot.23210.

    Article  CAS  PubMed  Google Scholar 

  40. Smet C, Leroy A, Sillen A, et al. Accepting its random coil nature allows a partial NMR assignment of the neuronal Tau protein. Chembiochem. 2004a;5:1639–46. https://doi.org/10.1002/cbic.200400145.

    Article  CAS  PubMed  Google Scholar 

  41. Smet C, Sambo AV, Wieruszeski JM, et al. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry. 2004b;43:2032–40. https://doi.org/10.1021/bi035479x.

    Article  CAS  PubMed  Google Scholar 

  42. Smet-Nocca C, Broncel M, Wieruszeski JM, et al. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst. 2011;7:1420–9. https://doi.org/10.1039/c0mb00337a.

    Article  CAS  PubMed  Google Scholar 

  43. Sottejeau Y, Bretteville A, Cantrelle F-X, et al. Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and Tau’s proline-rich domain. Acta Neuropathol Commun. 2015;3:58. https://doi.org/10.1186/s40478-015-0237-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sultan A, Nesslany F, Violet M, et al. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem. 2011;286:4566–75. https://doi.org/10.1074/jbc.M110.199976.

    Article  CAS  PubMed  Google Scholar 

  45. von Bergen M, Friedhoff P, Biernat J, et al. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A. 2000;97:5129–34.. doi: 97/10/5129 [pii]

    Article  Google Scholar 

  46. Wang Y, Balaji V, Kaniyappan S, et al. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 2017;12:5. https://doi.org/10.1186/s13024-016-0143-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72:1858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Landrieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danis, C. et al. (2019). Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_3

Download citation

Publish with us

Policies and ethics