Skip to main content
Book cover

Tau Biology pp 359–372Cite as

The Pathophysiology of Tau and Stress Granules in Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

This chapter discusses the relationship between tau, RNA binding proteins and stress granules, which exhibit an intimate bidirectional relationship affecting the functions of both tau and the translational stress response. We describe how tau becomes hyperphosphorylated and oligomerized as part of an endogenous mechanism to promote the translational stress response through interaction with RNA binding proteins. Prior studies demonstrate that dysfunction of RNA binding proteins biology is sufficient to cause neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Emerging evidence indicates that tau-mediated neurodegeneration also occurs through a mechanism that is mediated by RNA binding proteins and the translational stress response. Discovery of the role of RNA metabolism in tauopathy opens a wide variety of novel therapeutic approaches. Multiple studies have already shown that approaches reducing the levels of selected RNA binding proteins or inhibiting the translational stress response can intervene in the pathophysiology of motoneuron diseases. Emerging studies show that reducing the levels of selected RNA binding proteins or inhibiting the translational stress response also reduces neurodegeneration in models of tauopathy and Aβ mediated degeneration. The combined impact of these studies indicate that RNA binding proteins and RNA metabolism represent a valuable new frontier for the investigation and treatment tauopathies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33(3):141–50. https://doi.org/10.1016/j.tibs.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  2. Apicco DJ et al. Dysregulation of RNA splicing in tauopathies, Submitted. 2018

    Google Scholar 

  3. Apicco DJ, et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci. 2018; https://doi.org/10.1038/s41593-017-0022-z.

  4. Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72. https://doi.org/10.1038/nrn2194.

    Article  CAS  PubMed  Google Scholar 

  5. Banani SF, et al. Compositional control of phase-separated cellular bodies. Cell. 2016;166(3):651–63. https://doi.org/10.1016/j.cell.2016.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbash S, et al. Alzheimer’s brains show inter-related changes in RNA and lipid metabolism. Neurobiol Dis. 2017;106:1–13. https://doi.org/10.1016/j.nbd.2017.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker LA, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71. https://doi.org/10.1038/nature22038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration – lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 2013;280(18):4348–70. https://doi.org/10.1111/febs.12287.

    Article  CAS  PubMed  Google Scholar 

  9. Bosco DA, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet. 2010; https://doi.org/10.1093/hmg/ddq335.

  10. Boyd JD, et al. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. J Biomol Screen. 2014; https://doi.org/10.1177/1087057113501553.

  11. Brehm MA, et al. Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase. Biochem J. 2007; https://doi.org/10.1042/BJ20070382.

  12. Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36(6):932–41. https://doi.org/10.1016/j.molcel.2009.11.020

  13. Chang CF, et al. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci. 2016;23(1):72. https://doi.org/10.1186/s12929-016-0290-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dang Y, et al. Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem. 2006;281(43):32870–8. https://doi.org/10.1074/jbc.M606149200

  15. de Calignon A, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73(4):685–97. https://doi.org/10.1016/j.neuron.2011.11.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dormann D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29(16):2841–57. https://doi.org/10.1038/emboj.2010.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eftekharzadeh B, Daigle JG, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018a;99(5):925–940.e7. https://doi.org/10.1016/j.neuron.2018.07.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eftekharzadeh B, Tepper K, et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018b;37:e98049. https://doi.org/10.15252/embj.201798049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elden AC, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75. https://doi.org/10.1038/nature09320

  20. Feric M, et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165(7):1686–97. https://doi.org/10.1016/j.cell.2016.04.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finkel RS, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–26. https://doi.org/10.1016/S0140-6736(16)31408-8.

    Article  CAS  PubMed  Google Scholar 

  22. Finkel RS, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32. https://doi.org/10.1056/NEJMoa1702752.

    Article  CAS  PubMed  Google Scholar 

  23. Gennarelli M, et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun. 1995;213(1):342–8. https://doi.org/10.1006/bbrc.1995.2135

  24. Geschwind DH, et al. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60(4):842–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilks N, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004;15(12):5383–98. https://doi.org/10.1091/mbc.e04-08-0715

  26. Gunawardana CG, et al. The human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol Cell Proteomics. 2015;14(11):3000–14. https://doi.org/10.1074/mcp.M115.050724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo C, et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 2018a;23(10):2874–80. https://doi.org/10.1016/j.celrep.2018.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo L, et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell. 2018b;173(3):677–692.e20. https://doi.org/10.1016/j.cell.2018.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halliday M, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015;6:e1672. https://doi.org/10.1038/cddis.2015.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han TW, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell. 2012;149(4):768–79. https://doi.org/10.1016/j.cell.2012.04.016.

    Article  CAS  PubMed  Google Scholar 

  31. He Y, Smith R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci. 2009;66(7):1239–56. https://doi.org/10.1007/s00018-008-8532-1.

    Article  CAS  PubMed  Google Scholar 

  32. Hofweber M, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell. 2018;173(3):706–719 e13. https://doi.org/10.1016/j.cell.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  33. Hoover BR, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81. https://doi.org/10.1016/j.neuron.2010.11.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hughes MP, et al. Atomic structures of low-complexity protein segments reveal kinked beta sheets that assemble networks. Science. 2018;359(6376):698–701. https://doi.org/10.1126/science.aan6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ikezu T, et al. Tau phosphorylation is impacted by rare AKAP9 mutations associated with Alzheimer disease in African Americans. J Neuroimmune Pharmacol. 2018; https://doi.org/10.1007/s11481-018-9781-x.

  36. Ittner LM, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97. https://doi.org/10.1016/j.cell.2010.06.036.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang L, et al. TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol. 2018; https://doi.org/10.1007/s00401-018-1937-5.

  38. Johnson BS, et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem. 2009;284(30):20329–39. https://doi.org/10.1074/jbc.M109.010264

  39. Kaehler C, et al. Ataxin-2-like is a regulator of stress granules and processing bodies. PLoS One. 2012; https://doi.org/10.1371/journal.pone.0050134.

  40. Kapeli K, Martinez FJ, Yeo GW. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet. 2017;136(9):1193–214. https://doi.org/10.1007/s00439-017-1830-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kedersha N, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol. 2000;151(6):1257–68. https://doi.org/10.1083/jcb.151.6.1257

  42. Kedersha N, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 2002;13(1):195–210. https://doi.org/10.1091/mbc.01-05-0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim HJ, et al. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 2014;46(2):152–60. https://doi.org/10.1038/ng.2853.

    Article  CAS  PubMed  Google Scholar 

  44. Li W, et al. Cell proteins TIA-1 and TIAR interact with the 3 ′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol. 2002;76(23):11989–2000. https://doi.org/10.1128/JVI.76.23.11989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li YR, et al. Stress granules as crucibles of ALS pathogenesis. J Cell Biol. 2013;201(3):361–72. https://doi.org/10.1083/jcb.201302044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin Y, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell. 2015;60(2):208–19. https://doi.org/10.1016/j.molcel.2015.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu L, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7(2):e31302. https://doi.org/10.1371/journal.pone.0031302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu-Yesucevitz L, et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One. 2010;5(10):e13250. https://doi.org/10.1371/journal.pone.0013250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu-Yesucevitz L, et al. Local RNA translation at the synapse and in disease. J Neurosci. 2011;31(45):16086–93. https://doi.org/10.1523/JNEUROSCI.4105-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lorson CL, et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci. 1999; https://doi.org/10.1073/pnas.96.11.6307.

  51. Lourenco MV, et al. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab. 2013;18(6):831–43. https://doi.org/10.1016/j.cmet.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  52. Ma T, et al. Suppression of eIF2alpha kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci. 2013;16(9):1299–305. https://doi.org/10.1038/nn.3486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mackenzie IR, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and Alter stress granule dynamics. Neuron. 2017;95(4):808–816.e9. https://doi.org/10.1016/j.neuron.2017.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Markmiller S, et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell. 2018;172(3):590–604.e13. https://doi.org/10.1016/j.cell.2017.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maziuk BF, et al. RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun. 2018;6(1):71. https://doi.org/10.1186/s40478-018-0574-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazroui R, et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell. 2006;17(10):4212–9. https://doi.org/10.1091/mbc.e06-04-0318

  57. McEwen E, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem. 2005;280(17):16925–33. https://doi.org/10.1074/jbc.M412882200

  58. McGurk L, et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell. 2018;71(5):703–717.e9. https://doi.org/10.1016/j.molcel.2018.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meier S, et al. Identification of novel tau interactions with endoplasmic reticulum proteins in Alzheimer’s disease brain. J Alzheimers Dis. 2015;48(3):687–702. https://doi.org/10.3233/JAD-150298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meier S, et al. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. J Neurosci. 2016; https://doi.org/10.1523/JNEUROSCI.3029-15.2016.

  61. Mendell JR, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/NEJMoa1706198.

    Article  CAS  PubMed  Google Scholar 

  62. Mercuri E, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35. https://doi.org/10.1056/NEJMoa1710504.

    Article  CAS  PubMed  Google Scholar 

  63. Mills JD, et al. RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett. 2013;536:90–5. https://doi.org/10.1016/j.neulet.2012.12.042.

    Article  CAS  PubMed  Google Scholar 

  64. Mokas S, et al. Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell. 2009;20(11):2673–83. doi: E08-10-1061 [pii]10.1091/mbc.E08-10-1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Molliex A, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163(1):123–33. https://doi.org/10.1016/j.cell.2015.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreno JA, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature. 2012; https://doi.org/10.1038/nature11058.

  67. Moujalled D, et al. Kinase inhibitor screening identifies cyclin-dependent kinases and glycogen synthase kinase 3 as potential modulators of TDP-43 cytosolic accumulation during cell stress. PLoS One. 2013;8(6):e67433. https://doi.org/10.1371/journal.pone.0067433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muto NF, et al. Inhibition of replication of reactivated human immunodeficiency virus type 1 (HIV-1) in latently infected U1 cells transduced with an HIV-1 long terminal repeat-driven PKR cDNA construct. J Virol. 1999;73(11):9021–8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10516008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neumann M, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3. https://doi.org/10.1126/science.1134108

  70. Neumann M, et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 2009; https://doi.org/10.1007/s00401-008-0477-9

  71. Nonaka T, et al. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet. 2009; https://doi.org/10.1093/hmg/ddp275.

  72. Nonhoff U, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell. 2007;18(4):1385–96. https://doi.org/10.1091/mbc.e06-12-1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oddo S, et al. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem. 2006;281(51):39413–23. https://doi.org/10.1074/jbc.M608485200.

    Article  CAS  PubMed  Google Scholar 

  74. Patel A, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162(5):1066–77. https://doi.org/10.1016/j.cell.2015.07.047.

    Article  CAS  PubMed  Google Scholar 

  75. Prilusky J, et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21(16):3435–8. https://doi.org/10.1093/bioinformatics/bti537.

    Article  CAS  PubMed  Google Scholar 

  76. Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26(9):668–79. https://doi.org/10.1016/j.tcb.2016.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell. 2013;154(4):727–36. https://doi.org/10.1016/j.cell.2013.07.038.

    Article  CAS  PubMed  Google Scholar 

  78. Robberecht W, Eykens C. The genetic basis of amyotrophic lateral sclerosis: recent breakthroughs. Adv Genomics Genet. 2015;5:327–45. https://doi.org/10.2147/AGG.S57397.

    Article  Google Scholar 

  79. Sanders DW, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):1271–88. https://doi.org/10.1016/j.neuron.2014.04.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. SantaCruz K. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–81. https://doi.org/10.1126/science.1113694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scheckel C, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. Elife. 2016;5 https://doi.org/10.7554/eLife.10421.

  82. Silva JM, et al. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ. 2018;26(8):1411–27. https://doi.org/10.1038/s41418-018-0217-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sreedharan J, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72. https://doi.org/10.1126/science.1154584

  84. Stamer K, et al. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051–63. https://10.1083/jcb.200108057jcb.200108057 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas M, Alegre-Abarrategui J, Wade-Martins R. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain. 2013;136(Pt 5):1345–60. https://doi.org/10.1093/brain/awt030.

    Article  PubMed  Google Scholar 

  86. Van der Jeugd A, et al. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol. 2012;123(6):787–805. https://doi.org/10.1007/s00401-012-0987-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanderweyde T, et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in Tauopathies. J Neurosci. 2012;32(24):8270–83. https://doi.org/10.1523/JNEUROSCI.1592-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vanderweyde T, et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016; https://doi.org/10.1016/j.celrep.2016.04.045.

  89. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21. https://doi.org/10.1038/nrn.2015.1.

    Article  CAS  PubMed  Google Scholar 

  90. Wang P, et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol. 2017;133(5):731–49. https://doi.org/10.1007/s00401-016-1663-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang J, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174(3):688–699.e16. https://doi.org/10.1016/j.cell.2018.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei MT, et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem. 2017;9(11):1118–25. https://doi.org/10.1038/nchem.2803.

    Article  CAS  PubMed  Google Scholar 

  93. Wek RC, Jiang H-Y, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006; https://doi.org/10.1042/BST20060007.

  94. Winton MJ, et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem. 2008; https://doi.org/10.1074/jbc.M800342200.

  95. Zempel H, Mandelkow E. Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. 2014;37(12):721–32. https://doi.org/10.1016/j.tins.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  96. Zempel H, et al. Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 2013;32(22):2920–37. https://doi.org/10.1038/emboj.2013.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang X, et al. RNA stores tau reversibly in complex coacervates. PLoS Biol. 2017;15(7):e2002183. https://doi.org/10.1371/journal.pbio.2002183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding to BW from the NIH (AG050471, NS089544, AG056318), BrightFocus Foundation, Alzheimer Association, Cure Alzheimer’s Fund and the Thome Medical Foundation.

Conflict of Interest

BW is co-founder and Chief Scientific Officer of Aquinnah Pharmaceuticals Inc., www.aquinnahpharma.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wolozin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz, A., Verma, M., Wolozin, B. (2019). The Pathophysiology of Tau and Stress Granules in Disease. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_26

Download citation

Publish with us

Policies and ethics