Skip to main content

Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy?

  • Chapter
  • First Online:
Tau Biology

Abstract

Myotonic dystrophies (DM) are rare inherited neuromuscular disorders linked to microsatellite unstable expansions in non-coding regions of ubiquitously expressed genes. The DMPK and ZNF9/CNBP genes which mutations are responsible for DM1 and DM2 respectively. DM are multisystemic disorders with brain affection and cognitive deficits. Brain lesions consisting of neurofibrillary tangles are often observed in DM1 and DM2 brain. Neurofibrillary tangles (NFT) made of aggregates of hyper and abnormally phosphorylated isoforms of Tau proteins are neuropathological lesions common to more than 20 neurological disorders globally referred to as Tauopathies. Although NFT are observed in DM1 and DM2 brain, the question of whether DM1 and DM2 are Tauopathies remains a matter of debate. In the present review, several pathophysiological processes including, missplicing, nucleocytoplasmic transport disruption, RAN translation which are common mechanisms implicated in neurodegenerative diseases will be described. Together, these processes including the missplicing of Tau are providing evidence that DM1 and DM2 are not solely muscular diseases but that their brain affection component share many similarities with Tauopathies and other neurodegenerative diseases. Understanding DM1 and DM2 pathophysiology is therefore valuable to more globally understand other neurodegenerative diseases such as Tauopathies but also frontotemporal lobar neurodegeneration and amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe K, Fujimura H, Toyooka K, Yorifuji S, Nishikawa Y, Hazama T, Yanagihara T. Involvement of the central nervous system in myotonic dystrophy. J Neurol Sci. 1994;127(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  2. Adie WJ, Greenfield JG. Dystrophia myotonica (myotonia atrophica). Brain. 1923;46:73–127.

    Article  Google Scholar 

  3. Alzheimer A. Uber eigenartige Krankheitsfalle des spateren Alters. Zbl ges Neurol Psych. 1911;4:356–85.

    Article  Google Scholar 

  4. Amack JD, Paguio AP, Mahadevan MS. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet. 1999;8(11):1975–84.

    Article  CAS  PubMed  Google Scholar 

  5. Andreadis A. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta. 2005;1739:91–103.

    Article  CAS  PubMed  Google Scholar 

  6. Antonini G, Mainero C, Romano A, Giubilei F, Ceschin V, Gragnani F, Morino S, Fiorelli M, Soscia F, Di Pasquale A, Caramia F. Cerebral atrophy in myotonic dystrophy: a voxel based morphometric study. J Neurol Neurosurg Psychiatry. 2004;75(11):1611–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, Cantero G, Cheng D, Jones DR, Wu Z, Li Y, Diner I, Heilman CJ, Rees HD, Wu H, Lin L, Szulwach KE, Gearing M, Mufson EJ, Bennett DA, Montine TJ, Seyfried NT, Wingo TS, Sun YE, Jin P, Hanfelt J, Willcock DM, Levey A, Lah JJ, Peng J. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2013;110(41):16562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;69(2):385.

    Article  CAS  PubMed  Google Scholar 

  9. Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 2011;121(5):589–95.

    Article  CAS  PubMed  Google Scholar 

  10. Caffrey TM, Joachim C, Paracchini S, Esiri MM, Wade-Martins R. Haplotype-specific expression of exon 10 at the human MAPT locus. Hum Mol Genet. 2006;15(24):3529–37.

    Article  CAS  PubMed  Google Scholar 

  11. Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci. 2014;6:57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Censori B, Provinciali L, Danni M, Chiaramoni L, Maricotti M, Foschi N, Del Pesce M, Salvolini U. Brain involvement in myotonic dystrophy: MRI features and their relationship to clinical and cognitive conditions. Acta Neurol Scand. 1994;90(3):211–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chen G, Carter RE, Cleary JD, Reid TS, Ranum LP, Swanson MS, Ebner TJ. Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiol Dis. 2018;112:35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chamberlain CM, Ranum LP. Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise. Hum Mol Genet. 2012;21(21):4645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, Shankle WR, Elizarov A, Kolb HC. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.

    Article  CAS  PubMed  Google Scholar 

  16. Cleary JD, Pattamatta A, Ranum LPW. Repeat associated non-ATG (RAN) translation. J Biol Chem. 2018; [Epub ahead of print]

    Google Scholar 

  17. Culebras A, Feldman RG, Merk FB. Cytoplasmic inclusion bodies within neurons of the thalamus in myotonic dystrophy. A light and electron microscope study. J Neurol Sci. 1973;19(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  18. Dhaenens CM, Schraen-Maschke S, Tran H, Vingtdeux V, Ghanem D, Leroy O, Delplanque J, Vanbrussel E, Delacourte A, Vermersch P, Maurage CA, Gruffat H, Sergeant A, Mahadevan MS, Ishiura S, Buée L, Cooper TA, Caillet-Boudin ML, Charlet-Berguerand N, Sablonnière B, Sergeant N. Overexpression of MBNL1 fetal isoforms and modified splicing of Tau in the DM1 brain: two individual consequences of CUG trinucleotide repeats. Exp Neurol. 2008;210(2):467–78.

    Article  CAS  PubMed  Google Scholar 

  19. Dhaenens CM, Tran H, Frandemiche ML, Carpentier C, Schraen-Maschke S, Sistiaga A, Goicoechea M, Eddarkaoui S, Van Brussels E, Obriot H, Labudeck A, Gevaert MH, Fernandez-Gomez F, Charlet-Berguerand N, Deramecourt V, Maurage CA, Buée L, Lopez de Munain A, Sablonnière B, Caillet-Boudin ML, Sergeant N. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochim Biophys Acta. 2011;1812(7):732–42.

    Article  CAS  PubMed  Google Scholar 

  20. Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G. Brain MRI features of congenital- and adult-form myotonic dystrophy type 1: case-control study. Neuromuscul Disord. 2002;12(5):476–83.

    Article  PubMed  Google Scholar 

  21. Di Costanzo A, Di Salle F, Santoro L, Tessitore A, Bonavita V, Tedeschi G. Pattern and significance of white matter abnormalities in myotonic dystrophy type 1: an MRI study. J Neurol. 2002;249(9):1175–82.

    Article  PubMed  Google Scholar 

  22. Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science. 2008;319(5866):1086–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT. Tau protein disrupts Nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018;99(5):925–940.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fardaei M, Larkin K, Brook JD, Hamshere MG. In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts. Nucleic Acids Res. 2001;29(13):2766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallais B, Gagnon C, Mathieu J. Richer L.Cognitive decline over time in adults with myotonic dystrophy type 1: A 9-year longitudinal study. Neuromuscul Disord. 2017;27(1):61–72.

    Article  PubMed  Google Scholar 

  26. Gallo JM, Noble W, Martin TRRNA. protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies. Cell Mol Life Sci. 2007;64(13):1701–14. Review

    Article  CAS  PubMed  Google Scholar 

  27. García-López A, Llamusí B, Orzáez M, Pérez-Payá E, Artero RD. In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc Natl Acad Sci U S A. 2011;108(29):11866–71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gibson R. Dystrophia myotonica in association with mental defect. Can Med Assoc J. 1961;84:1234–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H, Riederer P, Möller HJ, Andreadis A, Henkel K, Stamm S. The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem. 2006;96(3):635–44.

    Article  CAS  PubMed  Google Scholar 

  30. Glantz RH, Wright RB, Huckman MS, Garron DC, Siegel IM. Central nervous system magnetic resonance imaging findings in myotonic dystrophy. Arch Neurol. 1988;45(1):36–7.

    Article  CAS  PubMed  Google Scholar 

  31. Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Fernández Gómez FJ, Eddarkaoui S, Sergeant N, Buée L, Kimura T, Clark HB, Dalton J, Takamura K, Weyn-Vanhentenryck SM, Zhang C, Reid T, Ranum LP, Day JW. Swanson MS. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic Dystrophy brain. Cell Rep. 2015;12(7):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomes-Pereira M, Foiry L, Nicole A, Huguet A, Junien C, Munnich A. Gourdon G.CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet. 2007;3(4):e52. Epub 2007 Feb 22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Harper PS. Myotonic dystrophy. London: WB Saunders; 2001.

    Google Scholar 

  34. Hernández-Hernández O, Bermúdez-de-León M, Gómez P, Velázquez-Bernardino P, García-Sierra F, Cisneros B. Myotonic dystrophy expanded CUG repeats disturb the expression and phosphorylation of tau in PC12 cells. J Neurosci Res. 2006;84(4):841–51.

    Article  PubMed  CAS  Google Scholar 

  35. Hernández-Hernández O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, Saenger S, Marciniak E, Obriot H, Chevarin C, Nicole A, Revillod L, Charizanis K, Lee KY, Suzuki Y, Kimura T, Matsuura T, Cisneros B, Swanson MS, Trovero F, Buisson B, Bizot JC, Hamon M, Humez S, Bassez G, Metzger F, Buée L, Munnich A, Sergeant N, Gourdon G, Gomes-Pereira M. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain. 2013;136(Pt 3):957–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hirase T, Araki S. Cerebrospinal fluid proteins in muscular dystrophy patients. Brain Dev. 1984;6(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huin V, Buée L, Behal H, Labreuche J, Sablonnière B, Dhaenens CM. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer’s disease and progressive supranuclear palsy brains. Sci Rep. 2017;7(1):12589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet. 2004;13(24):3079–88.

    Article  CAS  PubMed  Google Scholar 

  41. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302(5652):1978–80.

    Article  CAS  PubMed  Google Scholar 

  42. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2006;103(31):11748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kornblum C, Reul J, Kress W, Grothe C, Amanatidis N, Klockgether T, Schröder R. Cranial magnetic resonance imaging in genetically proven myotonic dystrophy type 1 and 2. J Neurol. 2004;251(6):710–4.

    Article  PubMed  Google Scholar 

  44. Kiuchi A, Otsuka N, Namba Y, Nakano I, Tomonaga M. Presenile appearance of abundant Alzheimer’s neurofibrillary tangles without senile plaques in the brain in myotonic dystrophy. Acta Neuropathol. 1991;82:1–5.

    Article  CAS  PubMed  Google Scholar 

  45. Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog Mol Subcell Biol. 2006;44:133–59.

    Article  CAS  PubMed  Google Scholar 

  46. Labayru G, Arenzana I, Aliri J, Zulaica M, López de Munain A, Sistiaga AA. Social cognition in myotonic dystrophy type 1: specific or secondary impairment? PLoS One. 2018;13(9):e0204227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ladd AN, Charlet N, Cooper TA. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol. 2001;21(4):1285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ladd AN, Nguyen NH, Malhotra K, Cooper TA. CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer dependent alternative splicing. J Biol Chem. 2004;279(17):17756–64.

    Article  CAS  PubMed  Google Scholar 

  49. Laustriat D, Gide J, Barrault L, Chautard E, Benoit C, Auboeuf D, Boland A, Battail C, Artiguenave F, Deleuze JF, Bénit P, Rustin P, Franc S, Charpentier G, Furling D, Bassez G, Nissan X, Martinat C, Peschanski M, Baghdoyan S. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. Mol Ther Nucleic Acids. 2015;4:e262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A. 2012;109(11):4221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther. 2013 Apr;23(2):109–17.

    Article  CAS  PubMed  Google Scholar 

  52. Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res. 2006;84(4):852–9.

    Article  CAS  PubMed  Google Scholar 

  53. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864–7.

    Article  CAS  PubMed  Google Scholar 

  54. Liu F, Gong CX. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener. 2008;3:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Malloy P, Mishra SK, Adler SH. Neuropsychological deficits in myotonic muscular dystrophy. J Neurol Neurosurg Psychiatry. 1990;53(11):1011–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton CA. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000;289(5485):1769–73.

    Article  CAS  PubMed  Google Scholar 

  57. Mattsson N, Schöll M, Strandberg O, Smith R, Palmqvist S, Insel PS, Hägerström D, Ohlsson T, Zetterberg H, Jögi J, Blennow K, Hansson O. 18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol Med. 2017;9(9):1212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mattsson N, Lönneborg A, Boccardi M, Blennow K, Hansson O. Geneva task force for the roadmap of Alzheimer’s biomarkers. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:196–213. Review

    Article  CAS  PubMed  Google Scholar 

  59. Maurage CA, Udd B, Ruchoux MM, Vermersch P, Kalimo H, Krahe R, Delacourte A, Sergeant N. Similar brain tau pathology in DM2/PROMM and DM1/Steinert disease. Neurology. 2005;65(10):1636–8.

    Article  CAS  PubMed  Google Scholar 

  60. Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve. 2007;36(3):294–306. Review

    Article  CAS  PubMed  Google Scholar 

  61. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 2000;19(17):4439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Minnerop M, Gliem C, Kornblum C. Current progress in CNS imaging of myotonic dystrophy. Front Neurol. 2018;9:646.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, Schneider-Gold C, Betz RC, Helmstaedter C, Tittgemeyer M, Klockgether T, Kornblum C. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain. 2011;134(Pt 12):3530–46.

    Article  PubMed  Google Scholar 

  64. Mizukami K, Sasaki M, Baba A, Suzuki T, Shiraishi H. An autopsy case of myotonic dystrophy with mental disorders and various neuropathologic features. Psychiatry Clin Neurosci. 1999;53(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  65. Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ. van Kuik-Romeijn P, de Kimpe SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A. 2009;106(33):13915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakamori M, Takahashi T, Yamazaki Y, Kurashige T, Yamawaki T, Matsumoto M. Cyclin-dependent kinase 5 immunoreactivity for granulovacuolar degeneration. Neuroreport. 2012;23(15):867–72.

    Article  CAS  PubMed  Google Scholar 

  67. Ono S. A 53-year-old woman with muscular atrophy showing hypersomnia and respiratory failure. Neuropathology. 2008;28(5):557–60.

    Article  PubMed  Google Scholar 

  68. Orengo JP, Chambon P, Metzger D, Mosier DR, Snipes GJ, Cooper TA. Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2008;105(7):2646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ossenkoppele R, Prins ND, Pijnenburg YA, Lemstra AW, van der Flier WM, Adriaanse SF, Windhorst AD, Handels RL, Wolfs CA, Aalten P, Verhey FR, Verbeek MM, van Buchem MA, Hoekstra OS, Lammertsma AA, Scheltens P, van Berckel BN. Impact of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement. 2013;9(4):414–21.

    Article  PubMed  Google Scholar 

  70. Park SA, Ahn SI, Gallo JM. Tau mis-splicing in the pathogenesis of neurodegenerative disorders. BMB Rep. 2016;49(8):405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peric V, Jovanovic A, Sovtic S, Stolic R, Djikic D, Otasevic P. Temporal changes in plasma brain natriuretic peptide levels during exercise stressechocardiography in patients with dilated cardiomyopathy. Int Heart J. 2014;55(5):428–32.

    Article  PubMed  Google Scholar 

  72. Sansone V, Gandossini S, Cotelli M, Calabria M, Zanetti O, Meola G. Cognitive impairment in adult myotonic dystrophies: a longitudinal study. Neurol Sci. 2007;28(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  73. Sistiaga A, Urreta I, Jodar M, Cobo AM, Emparanza J, Otaegui D, Poza JJ, Merino JJ, Imaz H, Martí-Massó JF, López de Munain A. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol Med. 2010;40(3):487–95.

    Article  CAS  PubMed  Google Scholar 

  74. Sergeant N, Sablonnière B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, Vermersch P, Delacourte A. Dysregulation of human brain microtubuleassociated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet. 2001;10(19):2143–55.

    Article  CAS  PubMed  Google Scholar 

  75. Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 2008;5(2):207–24. https://doi.org/10.1586/14789450.5.2.207.Review.

  76. Seznec H, Lia-Baldini AS, Duros C, Fouquet C, Lacroix C, Hofmann-Radvanyi H, Junien C, Gourdon G. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum Mol Genet. 2000;9(8):1185–94.

    Article  CAS  PubMed  Google Scholar 

  77. Shi J, Zhang T, Zhou C, Chohan MO, Gu X, Wegiel J, Zhou J, Hwang YW, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. J Biol Chem. 2008;283(42):28660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spillantini MG, Tolnay M, Love S, Goedert M. Microtubule-associated protein tau, heparan sulphate and alpha-synuclein in several neurodegenerative diseases with dementia. Acta Neuropathol. 1999;97(6):585–94.

    Article  CAS  PubMed  Google Scholar 

  79. Sobczak K, Wheeler TM, Wang W, Thornton CA. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Mol Ther. 2013;21(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  80. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82(4):756–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Takuma H, Arawaka S, Mori H. Isoforms changes of tau protein during development in various species. Brain Res Dev Brain Res. 2003;142(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  83. Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and developmental regulation of RNA processing. Compr Physiol. 2018;8(2):509–53.

    Article  PubMed  Google Scholar 

  84. Timchenko NA, Cai ZJ, Welm AL, Reddy S, Ashizawa T. Timchenko LT. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem. 2001;276(11):7820–6.

    Article  CAS  PubMed  Google Scholar 

  85. Vermersch P, Sergeant N, Ruchoux MM, Hofmann-Radvanyi H, Wattez A, Petit H, Dwailly P, Delacourte A. Specific tau variants in the brains of patients with myotonic dystrophy. Neurology. 1996;47(3):711–7.

    Article  CAS  PubMed  Google Scholar 

  86. Villemagne VL, Okamura N. Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr Opin Neurobiol. 2016;36:43–51. Review

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Gao L, Tse SW, Andreadis A. Heterogeneous nuclear ribonucleoprotein E3 modestly activates splicing of tau exon 10 via its proximal downstream intron, a hotspot for frontotemporal dementia mutations. Gene. 2010;451(1–2):23–31.

    Article  CAS  PubMed  Google Scholar 

  88. Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A. 2009;106(44):18551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weber YG, Roebling R, Kassubek J, Hoffmann S, Rosenbohm A, Wolf M, Steinbach P, Jurkat-Rott K, Walter H, Reske SN, Lehmann-Horn F, Mottaghy FM, Lerche H. Comparative analysis of brain structure, metabolism, and cognition in myotonic dystrophy 1 and 2. Neurology. 2010;74(14):1108–17.

    Article  CAS  PubMed  Google Scholar 

  90. Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT, Thornton CA. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science. 2009;325(5938):336–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5. https://doi.org/10.1038/nature11362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Winblad S, Hellström P, Lindberg C, Hansen S. Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion. J Neurol Neurosurg Psychiatry. 2006;77(2):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Winblad MJE. Blennow K, Jensen C, Samuelsson L, Lindberg C. Cerebrospinal fluid tau and amyloid beta42 protein in patients with myotonic dystrophy type 1. Eur J Neurol. 2008;15(9):947–52.

    Article  CAS  PubMed  Google Scholar 

  94. Wiśniewski HM, Berry K, Spiro AJ. Ultrastructure of thalamic neuronal inclusions in myotonic dystrophy. J Neurol Sci. 1975;24(3):321–9.

    Article  PubMed  Google Scholar 

  95. Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, Hiji M, Nagano Y, Yamawaki T, Matsumoto M. Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PLoS One. 2011;6(11):e26996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yasojima K, McGeer EG, McGeer PL. Tangled areas of Alzheimer brain have upregulated levels of exon 10 containing tau mRNA. Brain Res. 1999;831(1–2):301–5.

    Article  CAS  PubMed  Google Scholar 

  97. Yoshimura N. Alzheimer’s neurofibrillary changes in the olfactory bulb in myotonic dystrophy. Clin Neuropathol. 1990;9(5):240–3.

    CAS  PubMed  Google Scholar 

  98. Zhang YJ, Gendron TF, Ebbert MTW, O’Raw AD, Yue M, Jansen-West K, Zhang X, Prudencio M, Chew J, Cook CN, Daughrity LM, Tong J, Song Y, Pickles SR, Castanedes-Casey M, Kurti A, Rademakers R, Oskarsson B, Dickson DW, Hu W, Gitler AD, Fryer JD, Petrucelli L. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat Med. 2018;24(8):1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sergeant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-Gomez, F. et al. (2019). Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy?. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_17

Download citation

Publish with us

Policies and ethics