Skip to main content

Pollutant Profile Estimation Using Unscented Kalman Filter

  • Conference paper
  • First Online:
Advances in Control, Signal Processing and Energy Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 591))

Abstract

In this paper, we develop an estimation model for carbon monoxide (CO) air pollution concentrations. CO is an important pollutant which is used to calculate an air quality index (AQI). AQI becomes less reliable as the proportion of data missing due to equipment failure and periods of calibration increases. This paper presents the Unscented Kalman filter (UKF) to predict missing data of atmospheric carbon monoxide concentrations using the time series data of monitoring stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou Y, Mao H, Demerjian K, Hogrefe C, Liu J (2017) Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US. Atmos Environ 164:309–324

    Article  Google Scholar 

  2. Gaeggelera K, Prevota ASH, Dommena J, Legreid G, Reimann S, Baltensperger U (2008) Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids. Atmos Environ 42(35):8278–8287

    Article  Google Scholar 

  3. Spinazze A, Cattaneo A, Garramone G, Cavallo DM (2013) Temporal variation of size-fractionated particulate matter and carbon monoxide in selected microenvironments of the milan urban area. J Occup Environ Hyg 10(11):652–662

    Article  Google Scholar 

  4. Dahms TE, Younis LT, Wiens RD, Zarnegar S, Byers SL, Chaitman BR (1993) Effects of carbon monoxide exposure in patients with documented cardiac arrhythmias. J Am Coll Cardiol 21(2):442–450

    Article  Google Scholar 

  5. Mohajer NA, Zuidema C, Sousan S, Hallett L, Tatum M, Rule AM, Thomas G, Peters TM, Koehle K (2018) Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J Occup Environ Hyg 15(2):87–98

    Article  Google Scholar 

  6. Omidvarborna H, Baawain M, Al-Mamun A (2018) Ambient air quality and exposure assessment study of the Gulf Cooperation Council countries: a critical review. Sci Total Environ 636:437–448

    Article  Google Scholar 

  7. Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environ Model Softw 21(6):885–894

    Article  Google Scholar 

  8. Hartikainen J, Särkkä S (2010) Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE international workshop on machine learning for signal processing, August 2010, pp. 379–384

    Google Scholar 

  9. Arasaratnam I, Haykin S (2009) Cubature Kalman filters. IEEE Trans Autom Control 54(6):1254–1269

    Article  MathSciNet  Google Scholar 

  10. Julier S, Uhlmann J, Durrant-Whyte HF (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3):477–482

    Article  MathSciNet  Google Scholar 

  11. Reddy JBV, Dash PK, Samantaray R, Moharana AK (2009) Fast tracking of power quality disturbance signals using an optimized unscented filter. IEEE Trans Instrum Meas 58(12):3943–3952

    Article  Google Scholar 

  12. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  13. Metia S, Oduro SD, Duc HN, Ha Q (2016) Inverse air-pollutant emission and prediction using extended fractional Kalman filtering. IEEE J Sel Top Appl Earth Obs Remote Sens 9(5):2051–2063

    Article  Google Scholar 

  14. Metia S, Ha QP, Duc HN, Azzi M, Estimation of power plant emissions with unscented Kalman filter. IEEE J Sel Top Appl Earth Obs Remote Sens 11(8):2763–2772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Metia or A. P. Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Metia, S., Oduro, S.D., Sinha, A.P. (2020). Pollutant Profile Estimation Using Unscented Kalman Filter. In: Basu, T., Goswami, S., Sanyal, N. (eds) Advances in Control, Signal Processing and Energy Systems. Lecture Notes in Electrical Engineering, vol 591. Springer, Singapore. https://doi.org/10.1007/978-981-32-9346-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9346-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9345-8

  • Online ISBN: 978-981-32-9346-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics