Skip to main content

Application of UCNPs in Bio-imaging and Treatment

  • Chapter
  • First Online:
Principles and Applications of Up-converting Phosphor Technology
  • 364 Accesses

Abstract

Upconversion nanoparticles (UCNPs) are ideal fluorescent probes for biomedical applications owing to their good characteristics, including superior photostability, deep light penetration, low background auto-fluorescence and good biocompatibility. This chapter focuses on the recent developments of UCNPs in bioimaging and tumor therapy applications, as well as gives an analysis of the advantages of UCNPs over the conventional fluorescent materials and the biocompatibility and toxicity of UCNPs. Finally, the chapter discuss the challenges in the development of UCNPs in biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials. 2008;29(30):4122–4128.

    Article  CAS  Google Scholar 

  • Bae YM, Park YI, Nam SH, Kim JH, Lee K, Kim HM, Yoo B, Choi JS, Lee KT, Hyeon T, Suh YD. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials. 2012;33(35):9080–9086.

    Article  CAS  Google Scholar 

  • Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23(12):H18–H40.

    Article  CAS  Google Scholar 

  • Chatterjee DK, Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine (Lond). 2008;3(1):73–82.

    Article  CAS  Google Scholar 

  • Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 2012;33(7):2215–2222.

    Article  CAS  Google Scholar 

  • Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41(7):2885–2911.

    Article  CAS  Google Scholar 

  • Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H. Multifunctional NaYF4: Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem. 2011;21(17):6193.

    Article  CAS  Google Scholar 

  • Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18(10):1580–1585.

    Article  CAS  Google Scholar 

  • Jayakumar MK, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA. 2012;109(22):8483–8488.

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Shuter B, Muhammad Idris N. Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals. Langmuir. 2009;25(20):12015–12018.

    Article  CAS  Google Scholar 

  • Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH. In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. Nano Lett. 2006;6(2):169–174.

    Article  CAS  Google Scholar 

  • Lim ME, Lee YL, Zhang Y, Chu JJ. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials. 2012;33(6):1912–1920.

    Article  CAS  Google Scholar 

  • Liu Q, Sun Y, Li C, Zhou J, Yang T, Zhang X, Yi T, Wu D, Li F. 18F-Labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano. 2011;5(4):3146–3157.

    Article  CAS  Google Scholar 

  • Liu Z, Pu F, Huang S, Yuan Q, Ren J, Qu X. Long-circulating Gd(2)O(3):Yb(3+), Er(3+) up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials. 2013;34(6):1712–1721.

    Article  CAS  Google Scholar 

  • Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008;8(11):3834–3838.

    Article  CAS  Google Scholar 

  • Park YI, Kim JH, Lee KT, Jeon K-S, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S-I, Kim H, Park SP, Park B-J, Kim YW, Lee SH, Yoon S-Y, Song IC, Moon WK, Suh YD, Hyeon T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater. 2009;21(44):4467–4471.

    Article  CAS  Google Scholar 

  • Shan J, Budijono SJ, Hu G, Yao N, Kang Y, Ju Y, Prud’homme RK. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Func Mater. 2011;21(13):2488–2495.

    Article  CAS  Google Scholar 

  • Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials. 2011;32(11):2999–3007.

    Article  CAS  Google Scholar 

  • Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y. Facile fabrication of rare-earth-doped Gd2O3 Hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. J Phys Chem C. 2011;115(48):23790–23796.

    Article  CAS  Google Scholar 

  • Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011a;32(4):1110–1120.

    Article  CAS  Google Scholar 

  • Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011b;32(26):6145–6154.

    Article  CAS  Google Scholar 

  • Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F. Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials. 2011;32(29):7200–7208.

    Article  CAS  Google Scholar 

  • Xia A, Chen M, Gao Y, Wu D, Feng W, Li F. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials. 2012;33(21):5394–5405.

    Article  CAS  Google Scholar 

  • Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials. 2009a;30(29):5592–5600.

    Article  CAS  Google Scholar 

  • Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009b;81(21):8687–8694.

    Article  CAS  Google Scholar 

  • Yan L, Chang Y-N, Zhao L, Gu Z, Liu X, Tian G, Zhou L, Ren W, Jin S, Yin W, Chang H, Xing G, Gao X, Zhao Y. The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon. 2013;57:120–129.

    Article  CAS  Google Scholar 

  • Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F. Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials. 2012;33(14):3733–3742.

    Article  CAS  Google Scholar 

  • Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H, Huang C. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem. 2009;81(3):930–935.

    Article  CAS  Google Scholar 

  • Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W. Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials. 2010;31(33):8724–8731.

    Article  CAS  Google Scholar 

  • Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148–1156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y. (2019). Application of UCNPs in Bio-imaging and Treatment. In: Yang, R. (eds) Principles and Applications of Up-converting Phosphor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9279-6_17

Download citation

Publish with us

Policies and ethics