Skip to main content

Neuroimmune Advance in Depressive Disorder

  • Chapter
  • First Online:
Book cover Depressive Disorders: Mechanisms, Measurement and Management

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1180))

  • The original version of this chapter was revised: The reference Schedlowski et al. 2016 has been replaced with “Walsh et al. (2016)”. The correction to this chapter is available at: https://doi.org/10.1007/978-981-32-9271-0_16

Abstract

Major depressive disorder (MDD) or depression is one of the most highly prevalent, chronic, and recurrent disorders, which is associated with a high burden of disease and substantial impairment in social functions. Both immune molecules and cells have been implicated in the pathophysiology and maintenance of MDD. Findings in animals and MDD patients have suggested that both pro- and anti-inflammatory cytokines are activated in the neuroinflammation which contribute to behavioral symptoms and changes in the course of depression. There is a growing body of evidence to support that neuroinflammation is a mediator for the communication among stress response, neuroendocrine, neurotransmission, neurogenesis, and gut microbiota. These communications have been known as risk factors in the pathogenesis of MDD. In the meantime, accumulating evidence has suggested that some interventions targeting the inflammatory processes may play an important role in the treatment of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 March 2020

    In the original version of the book, the following belated corrections have been incorporated: “Walsh E, Eisenlohr-Moul T, Baer R (2016) Brief mindfulness training reduces salivary IL-6 and TNF-α in young women with depressive symptomatology. J Consult Clin Psychol 84(10):887–897. https://doi.org/10.1037/ccp0000122” has been replaced instead of “Schedlowski et al. 2016” in the reference list and citation in chapter 4. The chapter and book have been updated with the changes.

References

  • Bekhbat M, Neigh GN (2018) Sex differences in the neuro-immune consequences of stress: focus on depression and anxiety. Brain Behav Immun 67:1–12

    PubMed  Google Scholar 

  • Bekhbat M, Chu K, Le NA, Woolwine BJ, Haroon E, Miller AH, Felger JC (2018) Glucose and lipid-related biomarkers and the antidepressant response to infliximab in patients with treatment-resistant depression. Psychoneuroendocrinology 98:222–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015) Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci 9:273

    PubMed  PubMed Central  Google Scholar 

  • Bobinska K, Galecka E, Szemraj J, Galecki P, Talarowska M (2017) Is there a link between TNF gene expression and cognitive deficits in depression? Acta Biochim Pol 64:65–73

    CAS  PubMed  Google Scholar 

  • Bortolato B, Carvalho AF, Soczynska JK, Perini GI, McIntyre RS (2015) The involvement of TNF-α in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Curr Neuropharmacol 13:558–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC, Caruso G, Munafo A, Torrisi SA, Leggio GM, Trabace L, Nicoletti F, Drago F, Sortino MA, Copani A (2018) Neurobiological links between depression and AD: the role of TGF-beta1 signaling as a new pharmacological target. Pharmacol Res 130:374–384

    CAS  PubMed  Google Scholar 

  • Chen J, Huang C, Song Y, Shi H, Wu D, Yang Y, Rao C, Liao L, Wu Y, Tang J, Cheng K, Zhou J, Xie P (2015) Comparative proteomic analysis of plasma from bipolar depression and depressive disorder: identification of proteins associated with immune regulatory. Protein Cell 6:908–911

    PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E (2018) TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 69:556–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA (2016) Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316:209–220

    CAS  PubMed  Google Scholar 

  • Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD (2019) Crosstalk between inflammation and glutamate system in depression: signaling pathway and molecular biomarkers for Ketamine’s antidepressant effect. Mol Neurobiol 56:3484–3500

    CAS  PubMed  Google Scholar 

  • Engler H, Brendt P, Wischermann J, Wegner A, Rohling R, Schoemberg T, Meyer U, Gold R, Peters J, Benson S (2017) Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Mol Psychiatry 22:1448–1454

    CAS  PubMed  Google Scholar 

  • Fan N, Luo Y (2017) Altered serum levels of TNF-alpha, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol :e2588

    Google Scholar 

  • Fan C, Song Q, Wang P, Li Y, Yang M, Liu B, Yu SY (2018a) Curcumin protects against chronic stress-induced dysregulation of neuroplasticity and depression-like behaviors via suppressing IL-1beta pathway in rats. Neuroscience 392:92–106

    CAS  PubMed  Google Scholar 

  • Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY (2018b) Neuroprotective effects of curcumin on IL-1beta-induced neuronal apoptosis and depression-like behaviors caused by chronic stress in rats. Front Cell Neurosci 12:516

    CAS  PubMed  Google Scholar 

  • Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA (2015) The hippocampus and TNF: common links between chronic pain and depression. Neurosci Biobehav Rev 53:139–159

    CAS  PubMed  Google Scholar 

  • Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH (2015) Evidence to support peripheral and central IL-6 signaling targets to treat depression. Expert Opin Investig Drugs 24:991–992

    CAS  PubMed  Google Scholar 

  • Foster JA (2016) Gut microbiome and behavior: focus on neuroimmune interactions. Int Rev Neurobiol 131:49–65

    CAS  PubMed  Google Scholar 

  • Girotti M, Donegan JJ, Morilak DA (2013) Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress. Psychoneuroendocrinology 38:1158–1169

    CAS  PubMed  Google Scholar 

  • Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH (2019) Current understanding of gut microbiota in mood disorders: an update of human studies. Behav Sci (Basel, Switzerland) 10:98

    CAS  Google Scholar 

  • Jha MK, Trivedi MH (2018) Personalized antidepressant selection and pathway to novel treatments: clinical utility of targeting inflammation. Mol Neurobiol 19

    PubMed Central  Google Scholar 

  • Juarez-Orozco LE, Kurtys E, Dierckx RA, Moriguchi-Jeckel CM, Doorduin J, Li H, Sagar AP, Keri S (2018) Translocator protein (18 kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. J Cereb Blood Flow MetabIsm: Off J Int Soc Cereb Blood Flow Metabolism 83:1–7

    Google Scholar 

  • Kakeda S, Watanabe K, Katsuki A, Sugimoto K, Igata N, Ueda I, Igata R, Abe O, Yoshimura R, Korogi Y (2018) Relationship between interleukin (IL)-6 and brain morphology in drug-naive, first-episode major depressive disorder using surface-based morphometry. Sci Rep 8:10054

    PubMed  PubMed Central  Google Scholar 

  • Kalkman HO, Feuerbach D (2016) Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacol Ther 163:82–93

    CAS  PubMed  Google Scholar 

  • Kelly JR, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioral changes in the rat. J Psychiatr Res 82:109–118

    PubMed  Google Scholar 

  • Kim S, Hwang Y, Webster MJ, Lee D (2016a) Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry 21:376–385

    CAS  PubMed  Google Scholar 

  • Kim YK, Na KS, Myint AM, Leonard BE (2016b) The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 64:277–284

    CAS  PubMed  Google Scholar 

  • Krishnadas R, Johnman C, Graham GJ, Cavanagh J, Eyre HA, Air T, Pradhan A, Johnston J, Lavretsky H, Stuart MJ, Baune BT (2016) A meta-analysis of chemokines in major depression. Mol Psychiatry 68:1–8

    Google Scholar 

  • Kuhlman KR, Chiang JJ, Horn S, Bower JE (2017) Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci Biobehav Rev 80:166–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lasselin J, Lekander M, Axelsson J, Karshikoff B (2018) Sex differences in how inflammation affects behavior: what we can learn from experimental inflammatory models in humans. Pharmaceuticals (Basel, Switzerland) 50:91–106

    Google Scholar 

  • Leighton SP, Nerurkar L (2018) Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Int J Mol Sci 23:48–58

    CAS  Google Scholar 

  • Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, Lin H, Hu Y, Wu D, Shi M, Xie W, Sun H, Shao Z, Li H, Zhang K, Mo W, Huang TY, Xue M, Yuan Z, Zhang X, Bu G, Xu H, Xu Q, Zhang J (2018) Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 100(551–563):e557

    Google Scholar 

  • Li M, Li C, Yu H, Cai X, Shen X, Sun X, Wang J, Zhang Y, Wang C (2017a) Lentivirus-mediated interleukin-1beta (IL-1beta) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice. J Neuroinflammation 14:190

    Google Scholar 

  • Li J, Huang S, Huang W, Wang W, Wen G, Gao L, Fu X, Wang M, Liang W, Kwan HY, Zhao X, Lv Z (2017b) Paeoniflorin ameliorates interferon-alpha-induced neuroinflammation and depressive-like behaviors in mice. Oncotarget 8:8264–8282

    PubMed  Google Scholar 

  • Li DD, Xie H, Du YF, Long Y, Reed MN, Hu M, Suppiramaniam V, Hong H, Tang SS (2018) Antidepressant-like effect of zileuton is accompanied by hippocampal neuroinflammation reduction and CREB/BDNF upregulation in lipopolysaccharide-challenged mice. J Affect Disord 227:672–680

    CAS  PubMed  Google Scholar 

  • Lima-Ojeda JM, Rupprecht R, Baghai TC (2017) “I Am I and My Bacterial Circumstances”: linking Gut microbiome, neurodevelopment, and depression. Frontiers in psychiatry. 8:153

    PubMed  PubMed Central  Google Scholar 

  • Ma K, Zhang H, Baloch Z (2016) Pathogenetic and therapeutic applications of tumor necrosis factor-α (TNF-α) in major depressive disorder: a systematic review. Int J Mol Sci 17

    PubMed Central  Google Scholar 

  • Mayfield J, Ferguson L, Harris RA (2013) Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 23:513–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihailova S, Ivanova-Genova E, Lukanov T, Stoyanova V, Milanova V, Naumova E (2016) A study of TNF-alpha, TGF-beta, IL-10, IL-6, and IFN-gamma gene polymorphisms in patients with depression. J Neuroimmunol 293:123–128

    CAS  PubMed  Google Scholar 

  • Milenkovic VM (2019) The role of chemokines in the pathophysiology of major depressive disorder. World J Biol Psychiatry: Off J World Fed Soc Biol Psychiatry 20

    CAS  PubMed Central  Google Scholar 

  • Monai H, Hirase H (2018) Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 126:15–21

    PubMed  Google Scholar 

  • Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018) IL-1beta, IL-6, TNF-alpha and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8:12050

    PubMed  PubMed Central  Google Scholar 

  • Noto C, Rizzo LB, Mansur RB, McIntyre RS, Maes M, Brietzke E (2014) Targeting the inflammatory pathway as a therapeutic tool for major depression. NeuroImmunomodulation 21:131–139

    CAS  PubMed  Google Scholar 

  • Oglodek EA (2017) The role of PON-1, GR, IL-18, and OxLDL in depression with and without posttraumatic stress disorder. Pharmacol Rep: PR 69:837–845

    CAS  PubMed  Google Scholar 

  • Park HJ, Shim HS, An K, Starkweather A, Kim KS, Shim I (2015) IL-4 Inhibits IL-1beta-induced depressive-like behavior and central neurotransmitter alterations. Mediat Inflamm 2015:941413

    Google Scholar 

  • Park HS, Han A, Yeo HL, Park MJ, You MJ, Choi HJ, Hong CW, Lee SH, Kim SH, Kim B, Kwon MS (2017) Chronic high dose of captopril induces depressive-like behaviors in mice: possible mechanism of regulatory T cell in depression. Oncotarget. 8:72528–72543

    PubMed  PubMed Central  Google Scholar 

  • Patas K, Willing A, Demiralay C, Engler JB, Lupu A, Ramien C, Schafer T, Gach C, Stumm L, Chan K, Vignali M, Arck PC, Friese MA, Pless O, Wiedemann K, Agorastos A, Gold SM (2018) T cell phenotype and T cell receptor repertoire in patients with major depressive disorder. Front Immunol 9:291

    PubMed  PubMed Central  Google Scholar 

  • Peng L, Verkhratsky A, Gu L, Li B (2015) Targeting astrocytes in major depression. Expert Rev Neurother 15:1299–1306

    CAS  PubMed  Google Scholar 

  • Peng ZW, Xue F, Zhou CH, Zhang RG, Wang Y, Liu L, Sang HF, Wang HN, Tan QR (2018) Repetitive transcranial magnetic stimulation inhibits Sirt1/MAO-A signaling in the prefrontal cortex in a rat model of depression and cortex-derived astrocytes. Mol Cell Biochem 442:59–72

    CAS  PubMed  Google Scholar 

  • Ren Z, Yan P, Zhu L, Yang H, Zhao Y, Kirby BP, Waddington JL, Zhen X (2018) Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology 235:233–244

    CAS  PubMed  Google Scholar 

  • Reus GZ, de Moura AB, Silva RH, Resende WR, Quevedo J (2018) Resilience dysregulation in major depressive disorder: focus on glutamatergic imbalance and microglial activation. Evid-Based Complement Altern Med: eCAM 16:297–307

    CAS  Google Scholar 

  • Sahin TD, Karson A, Balci F, Yazir Y, Bayramgurler D, Utkan T (2015) TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res 292:233–240

    CAS  PubMed  Google Scholar 

  • Schmidt FM, Kirkby KC, Lichtblau N (2016) Inflammation and immune regulation as potential drug targets in antidepressant treatment. Curr Neuropharmacol 14:674–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin KH, Jeong HC, Choi DH, Kim SN, Kim TE (2017) Association of TNF-alpha G-308A gene polymorphism with depression: a meta-analysis. Neuropsychiatric disease and treatment. 13:2661–2668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silberman DM, Zorrilla-Zubilete M, Cremaschi GA, Genaro AM (2005) Protein kinase C-dependent NF-kappaB activation is altered in T cells by chronic stress. Cell Mol Life Sci: CMLS 62:1744–1754

    CAS  PubMed  Google Scholar 

  • Straub RH, Buttgereit F, Cutolo M (2011) Alterations of the hypothalamic-pituitary-adrenal axis in systemic immune diseases—a role for misguided energy regulation. Clin Exp Rheumatol 29:S23–S31

    CAS  PubMed  Google Scholar 

  • Su KP (2015) Nutrition, psychoneuroimmunology and depression: the therapeutic implications of omega-3 fatty acids in interferon-alpha-induced depression. BioMedicine 5:21

    PubMed  PubMed Central  Google Scholar 

  • Su KP, Lai HC, Peng CY, Su WP, Chang JP, Pariante CM (2019) Interferon-alpha-induced depression: comparisons between early- and late-onset subgroups and with patients with major depressive disorder. Brain, Behav, Immun 80:512–518

    Google Scholar 

  • Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci 12:323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MM, Lin WJ, Pan YQ, Guan XT, Li YC (2016) Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression. Physiol Behav 161:166–173

    CAS  PubMed  Google Scholar 

  • Tang MM, Lin WJ, Pan YQ, Li YC (2018) Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression. Front Cell Neurosci 12:255

    PubMed  PubMed Central  Google Scholar 

  • Toben C, Baune BT (2015) An act of balance between adaptive and maladaptive immunity in depression: a role for T lymphocytes. J Neuroimmune Pharmacol: Off J Soc Neuroimmune Pharmacology 10:595–609

    Google Scholar 

  • Tong L, Gong Y, Wang P, Hu W, Wang J, Chen Z, Zhang W, Huang C (2017) Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res 42:2698–2711

    CAS  PubMed  Google Scholar 

  • Valori CF, Guidotti G, Brambilla L, Rossi D (2019) Astrocytes: emerging therapeutic targets in neurological disorders. Trends Mol Med https://doi.org/10.1016/j.molmed.2019.04.010

    CAS  PubMed  Google Scholar 

  • Walsh E, Eisenlohr-Moul T, Baer R (2016) Brief mindfulness training reduces salivary IL-6 and TNF-α in young women with depressive symptomatology. J Consult Clin Psychol 84(10):887–897. https://doi.org/10.1037/ccp0000122

    PubMed  PubMed Central  Google Scholar 

  • Winter G, Hart RA, Charlesworth RPG, Sharpley CF (2018) Gut microbiome and depression: what we know and what we need to know. Rev Neurosci 29:629–643

    PubMed  Google Scholar 

  • Wohleb ES, Delpech JC (2017) Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog Neuropsychopharmacol Biol Psychiatry 79:40–48

    CAS  PubMed  Google Scholar 

  • Wohleb ES, Terwilliger R, Duman CH, Duman RS (2018) Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biol Psychiatry 83:38–49

    CAS  PubMed  Google Scholar 

  • Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J (2016) Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition 21:797–805

    CAS  Google Scholar 

  • Zhao XJ, Zhao Z, Yang DD, Cao LL, Zhang L, Ji J, Gu J, Huang JY, Sun XL (2017) Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res Bull 130:146–155

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yiru Fang for many constructive opinions on the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, G., Liu, X. (2019). Neuroimmune Advance in Depressive Disorder. In: Fang, Y. (eds) Depressive Disorders: Mechanisms, Measurement and Management. Advances in Experimental Medicine and Biology, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-32-9271-0_4

Download citation

Publish with us

Policies and ethics