Skip to main content

Neuroimaging Advance in Depressive Disorder

  • Chapter
  • First Online:
Book cover Depressive Disorders: Mechanisms, Measurement and Management

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1180))

Abstract

Neuroimaging shed light on the understanding of psychopathological mechanisms underlying major depressive disorder, despite its inconsistent findings. Noninvasive neuroimaging studies have indicated that various behavioral deficits in major depressive disorder are implicated with structural and functional abnormalities in specific brain regions. Moreover, disrupted brain morphological and functional properties may map out the underlying pathways from genetic and environmental factors to the prognosis of depression. Molecular neuroimaging studies have also provided novel method to probe transmitters and metabolites in brain regions rather than simply measuring brain morphological changes. Recent advanced neuroimaging approaches (e.g., pattern recognition) provides great opportunity to probe neuroimaging biomarkers that may contributes to improving diagnostic accuracy and predicting treatment outcomes. In this chapter, we conclude neuroimaging studies in the research field of depression from psychopathological, molecular, genetic/environmental, diagnostic, and therapeutic perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AL et al (2007) Diffusion tensor imaging of the brain 4(3):316–329

    Google Scholar 

  • Alexopoulos GS et al (2012) Functional connectivity in the cognitive control network and the default mode network in late-life depression. 139(1):56

    Google Scholar 

  • Almeida JR et al (2013) Pattern recognition analysis of anterior cingulate cortex blood flow to classify depression polarity. Br J Psychiatry 203(3):310–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amen DG et al (2017) Classification of depression, cognitive disorders, and co-morbid depression and cognitive disorders with perfusion SPECT neuroimaging 57(1):253–266

    Google Scholar 

  • Ando T, Dunn AJ (1999) Mouse tumor necrosis factor-alpha increases brain tryptophan concentrations and norepinephrine metabolism while activating the HPA axis in mice. NeuroImmunoModulation 6(5):319

    Article  CAS  PubMed  Google Scholar 

  • Andrei M et al (2013) Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder 7(2):930

    Google Scholar 

  • Arnone D (2019) Functional MRI findings, pharmacological treatment in major depression and clinical response. Prog Neuropsychopharmacol Biol Psychiatry 91:28–37

    Article  CAS  PubMed  Google Scholar 

  • Ball TM, Stein MB, Paulus MP (2014) Toward the application of functional neuroimaging to individualized treatment for anxiety and depression. Depress Anxiety 31(11):920–933

    Article  PubMed  Google Scholar 

  • Beijers L et al (2019) Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping. Mol Psychiatry 24:888–900

    Article  PubMed  Google Scholar 

  • Bick J et al (2019) Early parenting intervention and adverse family environments affect neural function in middle childhood. Biol Psychiatry 85(4):326–335

    Article  PubMed  Google Scholar 

  • Breitenstein B, Scheuer S, Holsboer F (2014) Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 19(5):539–561

    Article  CAS  PubMed  Google Scholar 

  • Bunge SA, Kahn IJEoN (2009) Cognition: an overview of neuroimaging techniques 1063–1067

    Chapter  Google Scholar 

  • Carballedo A et al (2013) Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Am J Med Genet B Neuropsychiatr Genet 162B(2):183–190

    Article  PubMed  CAS  Google Scholar 

  • Cardoner N et al (2013) Val66Met BDNF genotypes in melancholic depression: effects on brain structure and treatment outcome. Depress Anxiety 30(3):225–233

    Article  CAS  PubMed  Google Scholar 

  • Catenadell’Osso M et al (2013) Inflammation, serotonin and major depression. Curr Drug Targets 14(5):571–577

    Article  Google Scholar 

  • Chen J et al (2012) Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol Neurobiol 46(2):361–373

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2015) Aberrant connectivity within the default mode network in first-episode, treatment-naïve major depressive disorder 183:49–56

    Google Scholar 

  • Chen G et al (2017) Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: a voxel-based meta-analysis of diffusion tensor imaging. Prog Neuropsychopharmacol Biol Psychiatry 76:179–187

    Article  PubMed  Google Scholar 

  • Chi KF, Korgaonkar M, Grieve SM (2015) Imaging predictors of remission to anti-depressant medications in major depressive disorder. J Affect Disord 186:134–144

    Article  PubMed  Google Scholar 

  • Christmas DM, Potokar J, Davies SJ (2011) A biological pathway linking inflammation and depression: activation of indoleamine 2, 3-dioxygenase. Neuropsychiatric Dis Treat 7:431

    CAS  Google Scholar 

  • Costafreda SG et al (2009a) Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 20(7):637–641

    Article  PubMed  Google Scholar 

  • Costafreda SG et al (2009b) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4(7):e6353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dantzer R, Capuron L (2017) Inflammation-associated depression: evidence, mechanisms and implications. Springer International Publishing

    Google Scholar 

  • Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delany FM et al (2016) Depression, immune function, and early adrenarche in children. Psychoneuroendocrinology 63:228–234

    Article  CAS  PubMed  Google Scholar 

  • Deng F et al (2017) Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuro-Psychopharmacol & Biol Psychiatry 81

    Google Scholar 

  • Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord 172:8–17

    Article  PubMed  Google Scholar 

  • Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    Article  CAS  PubMed  Google Scholar 

  • Domschke K et al (2016) Magnetoencephalographic correlates of emotional processing in major depression before and after pharmacological treatment. Int J Neuropsychopharmacol 19(2)

    Article  PubMed Central  Google Scholar 

  • Drysdale AT et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    Article  CAS  PubMed  Google Scholar 

  • Dunlop BW et al (2017) Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatry 174(6):533–545

    Article  PubMed Central  PubMed  Google Scholar 

  • Dusi N et al (2015) Brain structural effects of antidepressant treatment in major depression. Curr Neuropharmacol 13(4):458–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenberger NI et al (2009) An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47(3):881–890

    Article  CAS  PubMed  Google Scholar 

  • Eisenberger NI et al (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiat 68(8):748–754

    Article  CAS  PubMed  Google Scholar 

  • El-Hage W et al (2013) Mechanisms of antidepressant resistance. Front Pharmacol 4:146

    PubMed  Google Scholar 

  • Eschweiler GW et al (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Research: Neuroimaging 99(3):161–172

    Article  CAS  PubMed  Google Scholar 

  • Felger JC et al (2016) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry 21(10):1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Feder S et al (2017) Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects. J Affect Disord 222:79–87

    Article  PubMed  Google Scholar 

  • Flint J, Kendler KS (2014) The genetics of major depression. Neuron 81(3):484–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frodl T, Amico F (2014) Is there an association between peripheral immune markers and structural/functional neuroimaging findings? Prog Neuropsychopharmacol Biol Psychiatry 48(2):295–303

    Article  CAS  PubMed  Google Scholar 

  • Frodl T et al (2004) Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 65(4):492–499

    Article  PubMed  Google Scholar 

  • Frodl TS et al (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65(10):1156–1165

    Article  PubMed  Google Scholar 

  • Frodl T et al (2010) Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 35(6):1383–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frodl T et al (2012) Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder. Translational Psychiatry 2(3):e88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu CH et al (2008) Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiat 64(6):505–512

    Article  PubMed  Google Scholar 

  • Fujino J et al (2015) Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder. J Affect Disord 174:397–399

    Article  PubMed  Google Scholar 

  • Fung G et al (2015) Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study. Bmc Psychiatry 15(1):298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao S, Calhoun VD, Sui J (2018) Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci Ther 24(11):1037–1052

    Article  PubMed Central  PubMed  Google Scholar 

  • Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–9, vii

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldapple K et al (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61(1):34–41

    Article  PubMed  Google Scholar 

  • Gong Q, He Y (2015) Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 77(3):223–235

    Article  PubMed  Google Scholar 

  • Gong L et al (2018) Disrupted reward and cognitive control networks contribute to anhedonia in depression. J Psychiatr Res 103:61–68

    Article  PubMed  Google Scholar 

  • Guo H et al (2014) Synergistic effect of 5-HT2A receptor gene and MAOA gene on the negative emotion of patients with depression. Clin Physiol Funct Imaging 34(4):277–281

    Article  CAS  PubMed  Google Scholar 

  • Han KM et al (2014) Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. J Affect Disord 155:42–48

    Article  PubMed  Google Scholar 

  • Han KM et al (2017) Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Hum Brain Mapp 38(3):1299–1310

    Article  PubMed  Google Scholar 

  • Hannestad J et al (2012) Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 63(1):232–239

    Article  CAS  PubMed  Google Scholar 

  • Haroon E et al (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Molecular Psychiatry 21(10):1351–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison NA et al (2011) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiat 66(5):407–414

    Article  Google Scholar 

  • Hayley S et al (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135(3):659–678

    Article  CAS  PubMed  Google Scholar 

  • Hestad KA et al (2017) The relationships among tryptophan, kynurenine, indoleamine 2,3-dioxygenase, depression, and neuropsychological performance. Front Psychol 8(1561)

    Google Scholar 

  • Himmerich H et al (2006) Successful antidepressant therapy restores the disturbed interplay between TNF-α system and HPA axis. Biol Psychiat 60(8):882

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa N et al (2017) Right hemisphere pitch-mismatch negativity reduction in patients with major depression: An MEG study. J Affect Disord 215:225

    Article  PubMed  Google Scholar 

  • Hosang GM et al (2014a) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis 12(1):1–11

    Google Scholar 

  • Hosang GM et al (2014b) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12:7

    Google Scholar 

  • Hsieh MH et al (2002) Hippocampal volume and antidepressant response in geriatric depression. Int J Geriatr Psychiatry 17(6):519–525

    Article  PubMed  Google Scholar 

  • Hsu DT et al (2012) Variation in the corticotropin-releasing hormone receptor 1 (CRHR1) gene influences fMRI signal responses during emotional stimulus processing. J Neurosci 32(9):3253–3260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang TL, Lin CC (2015) Advances in biomarkers of major depressive disorder. Adv Clin Chem 68:177

    Article  CAS  PubMed  Google Scholar 

  • Jaworska N et al (2016) The influence of 5-HTTLPR and Val66Met polymorphisms on cortical thickness and volume in limbic and paralimbic regions in depression: a preliminary study. BMC Psychiatry 16:61

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jefferson AL et al (2007) Inflammatory biomarkers are associated with total brain volume. The Framingham Heart Study 68(13):1032–1038

    CAS  Google Scholar 

  • Jehn CF et al (2010) Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer. Integrative Cancer Therapies 9(3):270–275

    Article  CAS  PubMed  Google Scholar 

  • Jiang J et al (2017) Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci 42(3):150–163

    Article  PubMed  Google Scholar 

  • Jie NF et al (2015) Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data. IEEE Trans Auton Ment Dev 7(4):320–331

    Article  PubMed Central  PubMed  Google Scholar 

  • Kambeitz J et al (2017) Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies. Biol Psychiatry 82(5):330–338

    Article  PubMed  Google Scholar 

  • Kaneko N et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31(12):2619–2626

    Article  CAS  PubMed  Google Scholar 

  • Kelly PA et al (2013) Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: neural markers of vulnerability? Biol Psychiatry 74(11):845–852

    Article  PubMed  Google Scholar 

  • Kennedy SH et al (2007) Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 164(5):778–788

    Article  PubMed  Google Scholar 

  • Konarski JZ et al (2009) Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J Psychiatry Neurosci 34(3):175–180

    PubMed Central  PubMed  Google Scholar 

  • Korgaonkar MS et al (2014) Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiat 76(7):567–574

    Article  PubMed  Google Scholar 

  • Kullmann JS et al (2013) Neural response to emotional stimuli during experimental human endotoxemia. Hum Brain Mapp 34(9):2217–2227

    Article  PubMed  Google Scholar 

  • Lee BT et al (2009) Impact of the tryptophan hydroxylase 1 gene A218C polymorphism on amygdala activity in response to affective facial stimuli in patients with major depressive disorder. Genes Brain Behav 8(5):512–518

    Article  CAS  PubMed  Google Scholar 

  • Lener MS, Iosifescu DV (2015) In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Ann N Y Acad Sci 1344:50–65

    Article  CAS  PubMed  Google Scholar 

  • Lener MS et al (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81(10):886–897

    Article  CAS  PubMed  Google Scholar 

  • Leuchter AF et al (2010) Biomarkers to predict antidepressant response. Curr Psychiatry Rep 12(6):553–562

    Article  PubMed Central  PubMed  Google Scholar 

  • Li M et al (2013a) SLC6A15 rs1545843 and depression: implications from brain imaging data. Am J Psychiatry 170(7):805

    Article  Google Scholar 

  • Li B et al (2013b) A treatment-resistant default mode subnetwork in major depression. Biol Psychiat 74(1):48–54

    Article  PubMed  Google Scholar 

  • Librenza-Garcia D et al (2017) The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev 80:538–554

    Article  PubMed  Google Scholar 

  • Linden DE (2012) The challenges and promise of neuroimaging in psychiatry. Neuron 73(1):8–22

    Article  CAS  PubMed  Google Scholar 

  • Liu CH et al (2015a) Alteration of spontaneous neuronal activity within the salience network in partially remitted depression. Brain Res 1599:93–102

    Article  CAS  PubMed  Google Scholar 

  • Liu CH et al (2015b) Alteration of spontaneous neuronal activity within the salience network in partially remitted depression. 1599:93

    Google Scholar 

  • Liu Y, Zhao J, Guo W (2018) Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front Psychol 9:2201

    Article  PubMed Central  PubMed  Google Scholar 

  • Lois G, Wessa M (2016) Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients. Soc Cogn Affect Neurosci 11(11):1792–1801

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Q et al (2013) Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res 1535:52–60

    Article  CAS  PubMed  Google Scholar 

  • Luborzewski A et al (2007) Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 41(7):606–615

    Article  PubMed  Google Scholar 

  • Macqueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research|[quest]. Molecular Psychiatry 16(3):252

    Article  CAS  PubMed  Google Scholar 

  • MacQueen GM et al (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 64(10):880–883

    Article  PubMed  Google Scholar 

  • Maglanoc LA et al (2019) Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression. Biol Psychiatry Cogn Neurosci Neuroimaging 4(1):16–26

    Google Scholar 

  • Marchand WR (2010) Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Struct Funct 215(2):73–96

    Article  PubMed  Google Scholar 

  • Marsland AL et al (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiat 64(6):484

    Article  CAS  PubMed  Google Scholar 

  • Masdeu JC (2011) Neuroimaging in psychiatric disorders. Neurotherapeutics 8(1):93–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77(6):1690–1694

    CAS  PubMed  Google Scholar 

  • Mayer EA et al (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci Off J Soc Neuroscic 34(46):15490–15496

    Article  Google Scholar 

  • Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Investig 125(3):926–938

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath CL et al (2013) Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70(8):821–829

    Article  PubMed Central  PubMed  Google Scholar 

  • Milak MS et al (2009) Pretreatment regional brain glucose uptake in the midbrain on PET may predict remission from a major depressive episode after three months of treatment. Psychiatry Res 173(1):63–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JM et al (2013) Brain serotonin 1A receptor binding as a predictor of treatment outcome in major depressive disorder. Biol Psychiatry 74(10):760–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morón JA et al (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. Journal of Neuroscience the Official Journal of the Society for Neuroscience 23(24):8480

    Article  Google Scholar 

  • Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5):519–525

    Article  CAS  PubMed  Google Scholar 

  • Myint A-M et al (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Nejad AB, Fossati P, Lemogne C (2013) Self-referential processing, rumination, and cortical midline structures in major depression. Front Hum Neurosci 7:666

    Article  PubMed Central  PubMed  Google Scholar 

  • Nugent AC et al (2016) Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder. Psychiatry Res Neuroimaging 254:56–66

    Article  PubMed  Google Scholar 

  • Olbrich S, Arns MJIRoP (2013) EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response 25(5):604–618

    Google Scholar 

  • Opel N et al (2019) Mediation of the influence of childhood maltreatment on depression relapse by cortical structure: a 2-year longitudinal observational study. The Lancet Psychiatry 6(4):318–326

    Article  PubMed  Google Scholar 

  • Pemberton LA et al (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interf & Cytokine Res Off J Int Soc Interf & Cytokine Res 17(10):589–595

    Article  CAS  Google Scholar 

  • Peng D et al (2018) The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front psychiatry 9:552

    Google Scholar 

  • Pezawas L, Meyer-Lindenberg A (2010) Imaging genetics: Progressing by leaps and bounds. Neuroimage 53(3):801–803

    Article  PubMed  Google Scholar 

  • Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiat 54(5):504–514

    Article  PubMed  Google Scholar 

  • Phillips JL et al (2015a) Impact of monoamine-related gene polymorphisms on hippocampal volume in treatment-resistant depression. Acta Neuropsychiatr 27(6):353–361

    Article  PubMed  Google Scholar 

  • Phillips ML et al (2015b) Identifying Predictors. Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches. 172(2):124–138

    Article  Google Scholar 

  • Phillips ML et al (2015c) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172(2):124–138

    Article  Google Scholar 

  • Pirnia T et al (2016) Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 6(6):e832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36(1):183–206

    Article  PubMed  Google Scholar 

  • Price RB et al (2017a) Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biol Psychiatry 81(4):347–357

    Article  PubMed  Google Scholar 

  • Price RB et al (2017b) Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology 42(13):2623–2632

    Article  PubMed Central  PubMed  Google Scholar 

  • Qin J et al (2017) Reconfiguration of hub-level community structure in depressions: a follow-up study via diffusion tensor imaging. J Affect Disord 207:305–312

    Article  PubMed  Google Scholar 

  • Qiu M et al (2018) Aberrant neural activity in patients with bipolar depressive disorder distinguishing to the unipolar depressive disorder: a resting-state functional magnetic resonance imaging study. Front psychiatry 9:238

    Google Scholar 

  • Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Rajeev K et al (2015) Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: results from the psychological, social and biological determinants of ill health (pSoBid) study. Neuroimage Clinical 9(3):e1

    Google Scholar 

  • Redlich R et al (2014) Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 71(11): 1222–1230

    Article  PubMed Central  PubMed  Google Scholar 

  • Renteria ME et al (2017) Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl Psychiatry 7(5):e1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter-Levin G, Xu L (2018) How could stress lead to major depressive disorder? IBRO Rep 4:38–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Ritchey M et al (2011) Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res 45(5):577–587

    Article  PubMed  Google Scholar 

  • Rosa MJ et al (2015) Sparse network-based models for patient classification using fMRI. Neuroimage 105:493–506

    Article  PubMed  Google Scholar 

  • Rosa CE et al (2017) Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Res 265:18–25

    Article  Google Scholar 

  • Sacchet MD et al (2015) Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psychiatry 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Saleh A et al (2017) Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med 47(1):171–181

    Article  CAS  PubMed  Google Scholar 

  • Sambataro F et al (2014) Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity. 44(10):2041

    CAS  Google Scholar 

  • Satomura Y et al (2019) Severity-dependent and -independent brain regions of major depressive disorder: A long-term longitudinal near-infrared spectroscopy study. J Affect Disord 243:249–254

    Article  PubMed  Google Scholar 

  • Savitz J et al (2013) Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav Immun 31(1):161

    Article  CAS  PubMed  Google Scholar 

  • Schmaal L et al (2016) Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 21(6):806–812

    Article  CAS  PubMed  Google Scholar 

  • Schmaal L et al (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 22(6):900–909

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld TJ et al (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923

    Article  PubMed Central  PubMed  Google Scholar 

  • Setiawan E et al (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72(3):268–275

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharpley CF, Agnew LL (2011) Cytokines and depression: findings, issues, and treatment implications. Rev Neurosci 22(3):295

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI et al (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A 107(24):11020–11025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheline YI et al (2012) Treatment course with antidepressant therapy in late-life depression. Am J Psychiatry 169(11):1185–1193

    Article  PubMed Central  PubMed  Google Scholar 

  • Shelton RC et al (2009) Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience 158(4):1406–1415

    Article  CAS  PubMed  Google Scholar 

  • Shen T et al (2015) Increased cognition connectivity network in major depression disorder: a FMRI study. 12(2):227

    Google Scholar 

  • Shirayama Y et al (2017) Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression. Biol Psychiatry: Cogn Neurosci Neuroimaging 2(2):196–204

    Google Scholar 

  • Siegle GJ, Carter CS, Thase ME (2006) Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry 163(4):735–738

    Article  PubMed  Google Scholar 

  • Siegle GJ et al (2012) Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch Gen Psychiatry 69(9):913–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Singleton A, Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet 20(R2):R158–R162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smitha DFJEN (2009) Molecular tools for assessing human depression by positron emission tomography 19(9):611–628

    Google Scholar 

  • Straub J et al (2017) Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. J Affect Disord 209:135–139

    Article  CAS  PubMed  Google Scholar 

  • Su L et al (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. 14(1):1–7

    Google Scholar 

  • Suh JS et al (2019) Cortical thickness in major depressive disorder: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 88:287–302

    Article  PubMed  Google Scholar 

  • Symms M et al (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235–1244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takizawa R et al (2014) Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage 85(1):498–507

    Article  CAS  PubMed  Google Scholar 

  • Tang S et al (2018) Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: a comparative meta-analysis. EBioMedicine 36:436–445

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor WD et al (2011) One-year change in anterior cingulate cortex white matter microstructure: relationship with late-life depression outcomes. The American Journal of Geriatric Psychiatry 19(1):43–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor WD et al (2012) AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Res 202(2):104–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update 53(2): 647–654

    Google Scholar 

  • Tekin Erguzel T, Tas C, Cebi M (2015) A wrapper-based approach for feature selection and classification of major depressive disorder-bipolar disorders. Comput Biol Med 64:127–37

    Article  PubMed  Google Scholar 

  • Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401

    Article  CAS  PubMed  Google Scholar 

  • Tozzi L et al (2016) Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression. Neuropsychopharmacology 41(2):487–497

    Article  CAS  PubMed  Google Scholar 

  • van der Schot AC et al (2009) Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry 66(2):142–151

    Article  PubMed  Google Scholar 

  • Viviani B et al (2003) Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the src family of kinases. J Neurosci 23(25):8692–8700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z et al (2012) Abnormal default-mode network in angiotensin converting enzyme D allele carriers with remitted geriatric depression. Behav Brain Res 230(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2014a) Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Hum Brain Mapp 35(4):1154–1166

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2014b) Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med 44(7):1417–1426

    Article  PubMed  Google Scholar 

  • Wegener I et al (2015) Changes of explicitly and implicitly measured self-esteem in the treatment of major depression: evidence for implicit self-esteem compensation. Compr Psychiatry 58:57–67

    Article  PubMed  Google Scholar 

  • Widge AS et al (2018) Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am J Psychiatry 176(1):44–56

    Article  Google Scholar 

  • Wilkin TJ et al (2009) Regimen simplification to Atazanavir-Ritonavir alone as maintenance antiretroviral therapy: final 48-week clinical and virologic outcomes. J Infect Dis 199(6):866–871

    Article  PubMed  Google Scholar 

  • Wise T et al (2016) Voxel-Based Meta-Analytical Evidence of Structural Disconnectivity in Major Depression and Bipolar Disorder. Biol Psychiatry 79(4):293–302

    Article  PubMed  Google Scholar 

  • Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? Journal of Neural Transmission 114(1):33–41

    Article  PubMed  Google Scholar 

  • Wu MJ et al (2015) Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach. J Psychiatr Res 62:84–91

    Article  PubMed Central  PubMed  Google Scholar 

  • Wohleb ES et al (2011) ß-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity. J Neurosci 31(17):6277–6288

    Google Scholar 

  • Yang W et al (2016) Abnormal brain activation during directed forgetting of negative memory in depressed patients. J Affect Disord 190:880–888

    Article  PubMed  Google Scholar 

  • Yang XH et al (2017a) Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder. J Affect Disord 218:284–290

    Article  PubMed  Google Scholar 

  • Yang XH et al (2017b) White matter microstructural abnormalities and their association with anticipatory anhedonia in depression. Psychiatry Res 264:29–34

    Article  PubMed  Google Scholar 

  • Yeh YW et al (2014) Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J Neuropsychopharmacol 18(3)

    Google Scholar 

  • Zalcman S et al (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643(1–2):40–49

    Article  CAS  PubMed  Google Scholar 

  • Zeng LL et al (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. 135(Pt 5):1498

    Google Scholar 

  • Zhai ZW et al (2019) Childhood trauma moderates inhibitory control and anterior cingulate cortex activation during stress. Neuroimage 185:111–118

    Article  PubMed  Google Scholar 

  • Zhang J et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342

    Article  PubMed  Google Scholar 

  • Zhang X et al (2014) First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network 9(1):e85241

    Google Scholar 

  • Zhang K et al (2016a) Molecular, Functional, and Structural Imaging of Major Depressive Disorder. Neurosci Bull 32(3):273–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X et al (2016b) Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study. J Affect Disord 201:153–161

    Article  CAS  PubMed  Google Scholar 

  • Zhang FF et al (2018a) Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther 24(11):994–1003

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang H et al (2019) Intrinsic gray-matter connectivity of the brain in major depressive disorder. J Affect Disord 251:78–85

    Article  PubMed  Google Scholar 

  • Zhang HF, Mellor D, Peng DH (2018b) Neuroimaging genomic studies in major depressive disorder: a systematic review. CNS Neurosci Ther 24(11):1020–1036

    Article  PubMed Central  PubMed  Google Scholar 

  • Zunszain PA, Hepgul N, Pariante CM (2012) Inflammation and depression. In: Behavioral neurobiology of depression and its treatment. Springer, pp 135–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daihui Peng or Zhijian Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, D., Yao, Z. (2019). Neuroimaging Advance in Depressive Disorder. In: Fang, Y. (eds) Depressive Disorders: Mechanisms, Measurement and Management. Advances in Experimental Medicine and Biology, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-32-9271-0_3

Download citation

Publish with us

Policies and ethics