Skip to main content

Introduction

  • Chapter
  • First Online:
  • 252 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter first gives a detailed background information on premature aging, laminopathies (a class of premature aging syndromes), and mammalian sirtuins to set the backdrop for introduction of SIRT6. This is followed by a literature survey on sirtuin 6 (SIRT6) and its roles in several biological processes, with a brief review on p53, a master regulatory factor involved in the aging process. This chapter concludes with the hypotheses and overall aims of the study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Matjusaitis, M., G. Chin, E.A. Sarnoski, and A. Stolzing. 2016. Biomarkers to identify and isolate senescent cells. Ageing Research Reviews 29: 1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Otin, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153: 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huidobro, C., A.F. Fernandez, and M.F. Fraga. 2013. Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine 34: 765–781.

    Article  CAS  PubMed  Google Scholar 

  4. Fraga, M.F., and M. Esteller. 2007. Epigenetics and aging: The targets and the marks. Trends in Genetics 23: 413–418.

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan, V., M.Z. Chow, Z. Wang, L. Zhang, B. Liu, X. Liu, and Z. Zhou. 2011. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 108: 12325–12330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh, S., and Z. Zhou. 2015. Epigenetics of physiological and premature aging. In Epigenetic gene expression and regulation, 313–338. Academic Press.

    Google Scholar 

  7. Navarro, C. L., P. Cau, and N. Levy. 2006. Molecular bases of progeroid syndromes. Human Molecular Genetics 15 Spec No 2: R151–R161.

    Article  CAS  PubMed  Google Scholar 

  8. Yin, D., and K. Chen. 2005. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Experimental Gerontology 40: 455–465.

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, S., and Z. Zhou. 2014. Genetics of aging, progeria and lamin disorders, Current Opinion in Genetics and Development, 26: 41–46. 2015. SIRTain regulators of premature senescence and accelerated aging. Protein Cell, 6: 322–333.

    Google Scholar 

  10. Kipling, D., T. Davis, E.L. Ostler, and R.G. Faragher. 2004. What can progeroid syndromes tell us about human aging? Science 305: 1426–1431.

    Article  CAS  PubMed  Google Scholar 

  11. Dreesen, O., and C.L. Stewart. 2011. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany NY) 3: 889–895.

    Article  CAS  Google Scholar 

  12. Arancio, W., G. Pizzolanti, S.I. Genovese, M. Pitrone, and C. Giordano. 2014. Epigenetic involvement in Hutchinson-Gilford progeria syndrome: A mini-review. Gerontology 60: 197–203.

    Article  CAS  PubMed  Google Scholar 

  13. Olive, M., I. Harten, R. Mitchell, J.K. Beers, K. Djabali, K. Cao, M.R. Erdos, C. Blair, B. Funke, L. Smoot, M. Gerhard-Herman, J.T. Machan, R. Kutys, R. Virmani, F.S. Collins, T.N. Wight, E.G. Nabel, and L.B. Gordon. 2010. Cardiovascular pathology in Hutchinson-Gilford progeria: Correlation with the vascular pathology of aging. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 2301–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gems, D., and L. Partridge. 2013. Genetics of longevity in model organisms: Debates and paradigm shifts. Annual Review of Physiology 75: 621–644.

    Article  CAS  PubMed  Google Scholar 

  15. Kirkwood, T.B. 2008. A systematic look at an old problem. Nature 451: 644–647.

    Article  CAS  PubMed  Google Scholar 

  16. Tubbs, A., and A. Nussenzweig. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168: 644–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, B., J. Wang, K.M. Chan, W.M. Tjia, W. Deng, X. Guan, J.D. Huang, K.M. Li, P.Y. Chau, D.J. Chen, D. Pei, A.M. Pendas, J. Cadinanos, C. Lopez-Otin, H.F. Tse, C. Hutchison, J. Chen, Y. Cao, K.S. Cheah, K. Tryggvason, and Z. Zhou. 2005. Genomic instability in laminopathy-based premature aging. Nature Medicine 11: 780–785.

    Article  CAS  PubMed  Google Scholar 

  18. de Boer, J., J.O. Andressoo, J. de Wit, J. Huijmans, R.B. Beems, H. van Steeg, G. Weeda, G.T. van der Horst, W. van Leeuwen, A.P. Themmen, M. Meradji, and J.H. Hoeijmakers. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276–1279.

    Article  PubMed  Google Scholar 

  19. Lombard, D.B., K.F. Chua, R. Mostoslavsky, S. Franco, M. Gostissa, and F.W. Alt. 2005. DNA repair, genome stability, and aging. Cell 120: 497–512.

    Article  CAS  PubMed  Google Scholar 

  20. Hasty, P., J. Campisi, J. Hoeijmakers, H. van Steeg, and J. Vijg. 2003. Aging and genome maintenance: Lessons from the mouse? Science 299: 1355–1359.

    Article  CAS  PubMed  Google Scholar 

  21. Dorman, J.B., B. Albinder, T. Shroyer, and C. Kenyon. 1995. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141: 1399–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kenyon, C.J. 2010. The genetics of ageing. Nature 464: 504–512.

    Article  CAS  PubMed  Google Scholar 

  23. Mostoslavsky, R., K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, P. Liu, G. Mostoslavsky, S. Franco, M.M. Murphy, K.D. Mills, P. Patel, J.T. Hsu, A.L. Hong, E. Ford, H.L. Cheng, C. Kennedy, N. Nunez, R. Bronson, D. Frendewey, W. Auerbach, D. Valenzuela, M. Karow, M.O. Hottiger, S. Hursting, J.C. Barrett, L. Guarente, R. Mulligan, B. Demple, G.D. Yancopoulos, and F.W. Alt. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124: 315–329.

    Article  CAS  PubMed  Google Scholar 

  24. Edgar, D., N.G. Larsson, and A. Trifunovic. 2010. Point mutations are causing progeroid phenotypes in the mtDNA mutator mouse. Cell Metabolism 11: 1.

    Article  CAS  PubMed  Google Scholar 

  25. Rapin, I. 2013. Disorders of nucleotide excision repair. Handbook of Clinical Neurology 113: 1637–1650.

    Article  PubMed  Google Scholar 

  26. Gerace, L., and M.D. Huber. 2012. Nuclear lamina at the crossroads of the cytoplasm and nucleus. Journal of Structural Biology 177: 24–31.

    Article  CAS  PubMed  Google Scholar 

  27. Zuela, N., D.Z. Bar, and Y. Gruenbaum. 2012. Lamins in development, tissue maintenance and stress. EMBO Reports 13: 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weber, K., U. Plessmann, and P. Traub. 1989. Maturation of nuclear lamin A involves a specific carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Letters 257: 411–414.

    Article  CAS  PubMed  Google Scholar 

  29. Schreiber, K.H., and B.K. Kennedy. 2013. When lamins go bad: Nuclear structure and disease. Cell 152: 1365–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carboni, N., L. Politano, M. Floris, A. Mateddu, E. Solla, S. Olla, L. Maggi, M. Antonietta Maioli, R. Piras, E. Cocco, G. Marrosu, and M. Giovanna Marrosu. 2013. Overlapping syndromes in laminopathies: A meta-analysis of the reported literature. Acta Myol 32: 7–17.

    PubMed  PubMed Central  Google Scholar 

  31. Azibani, F., A. Muchir, N. Vignier, G. Bonne, and A.T. Bertrand. 2014. Striated muscle laminopathies. Seminars in Cell & Developmental Biology 29: 107–115.

    Article  CAS  Google Scholar 

  32. Zhang, H., J.E. Kieckhaefer, and K. Cao. 2013. Mouse models of laminopathies. Aging Cell 12: 2–10.

    Article  CAS  PubMed  Google Scholar 

  33. Eriksson, M., W.T. Brown, L.B. Gordon, M.W. Glynn, J. Singer, L. Scott, M.R. Erdos, C.M. Robbins, T.Y. Moses, P. Berglund, A. Dutra, E. Pak, S. Durkin, A.B. Csoka, M. Boehnke, T.W. Glover, and F.S. Collins. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423: 293–298.

    Article  CAS  PubMed  Google Scholar 

  34. De Sandre-Giovannoli, A., R. Bernard, P. Cau, C. Navarro, J. Amiel, I. Boccaccio, S. Lyonnet, C.L. Stewart, A. Munnich, M. Le Merrer, and N. Levy. 2003. Lamin a truncation in Hutchinson-Gilford progeria. Science 300: 2055.

    Article  PubMed  Google Scholar 

  35. Prokocimer, M., R. Barkan, and Y. Gruenbaum. 2013. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 12: 533–543.

    Article  CAS  PubMed  Google Scholar 

  36. Musich, P.R., and Y. Zou. 2011. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochemical Society Transactions 39: 1764–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Endisha, H., J. Merrill-Schools, M. Zhao, M. Bristol, X. Wang, N. Kubben, and L.W. Elmore. 2015. Restoring SIRT6 expression in Hutchinson-Gilford progeria syndrome cells impedes premature senescence and formation of dysmorphic nuclei. Pathobiology 82: 9–20.

    Article  CAS  PubMed  Google Scholar 

  38. Decker, M.L., E. Chavez, I. Vulto, and P.M. Lansdorp. 2009. Telomere length in Hutchinson-Gilford progeria syndrome. Mechanisms of Ageing and Development 130: 377–383.

    Article  CAS  PubMed  Google Scholar 

  39. Sahin, E., and R.A. Depinho. 2010. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464: 520–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allsopp, R.C., H. Vaziri, C. Patterson, S. Goldstein, E.V. Younglai, A.B. Futcher, C.W. Greider, and C.B. Harley. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 89: 10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang, E., and C.B. Harley. 1995. Telomere length and replicative aging in human vascular tissues. Proceedings of the National Academy of Sciences of the United States of America 92: 11190–11194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Lange, T. 2009. How telomeres solve the end-protection problem. Science 326: 948–952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Armanios, M. 2009. Syndromes of telomere shortening. Annual Review of Genomics and Human Genetics 10: 45–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitteldorf, J.J. 2013. Telomere biology: Cancer firewall or aging clock? Biochemistry (Mosc) 78: 1054–1060.

    Article  CAS  Google Scholar 

  45. Calado, R.T., and N.S. Young. 2009. Telomere diseases. New England Journal of Medicine 361: 2353–2365.

    Article  CAS  PubMed  Google Scholar 

  46. Benson, E.K., S.W. Lee, and S.A. Aaronson. 2010. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. Journal of Cell Science 123: 2605–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao, K., C.D. Blair, D.A. Faddah, J.E. Kieckhaefer, M. Olive, M.R. Erdos, E.G. Nabel, and F.S. Collins. 2011. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. Journal of Clinical Investigation 121: 2833–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wallis, C.V., A.N. Sheerin, M.H. Green, C.J. Jones, D. Kipling, and R.G. Faragher. 2004. Fibroblast clones from patients with Hutchinson-Gilford progeria can senesce despite the presence of telomerase. Experimental Gerontology 39: 461–467.

    Article  CAS  PubMed  Google Scholar 

  49. Das, A., D.A. Grotsky, M.A. Neumann, R. Kreienkamp, I. Gonzalez-Suarez, A.B. Redwood, B.K. Kennedy, C.L. Stewart, and S. Gonzalo. 2013. Lamin A Deltaexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus 4: 410–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bird, A. 2007. Perceptions of epigenetics. Nature 447: 396–398.

    Article  CAS  PubMed  Google Scholar 

  51. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  52. Scaffidi, P., and T. Misteli. 2005. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nature Medicine 11: 440–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scaffidi, P., and T. Misteli. 2006. Lamin A-dependent nuclear defects in human aging. Science 312: 1059–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shumaker, D.K., T. Dechat, A. Kohlmaier, S.A. Adam, M.R. Bozovsky, M.R. Erdos, M. Eriksson, A.E. Goldman, S. Khuon, F.S. Collins, T. Jenuwein, and R.D. Goldman. 2006. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proceedings of the National Academy of Sciences of the United States of America 103: 8703–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, B., Z. Wang, L. Zhang, S. Ghosh, H. Zheng, and Z. Zhou. 2013. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nature Communications 4: 1868.

    Article  PubMed  CAS  Google Scholar 

  56. Sedivy, J.M., G. Banumathy, and P.D. Adams. 2008. Aging by epigenetics–a consequence of chromatin damage? Experimental Cell Research 314: 1909–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Columbaro, M., C. Capanni, E. Mattioli, G. Novelli, V.K. Parnaik, S. Squarzoni, N.M. Maraldi, and G. Lattanzi. 2005. Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cellular and Molecular Life Sciences 62: 2669–2678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hota, S.K., and B.G. Bruneau. 2016. ATP-dependent chromatin remodeling during mammalian development. Development 143: 2882–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pegoraro, G., N. Kubben, U. Wickert, H. Gohler, K. Hoffmann, and T. Misteli. 2009. Ageing-related chromatin defects through loss of the NURD complex. Nature Cell Biology 11: 1261–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Allen, H.F., P.A. Wade, and T.G. Kutateladze. 2013. The NuRD architecture. Cellular and Molecular Life Sciences 70: 3513–3524.

    Article  CAS  PubMed  Google Scholar 

  61. Jorgensen, S., I. Elvers, M.B. Trelle, T. Menzel, M. Eskildsen, O.N. Jensen, T. Helleday, K. Helin, and C.S. Sorensen. 2007. The histone methyltransferase SET8 is required for S-phase progression. Journal of Cell Biology 179: 1337–1345.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Liu, B., Z. Wang, S. Ghosh, and Z. Zhou. 2013. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell 12: 316–318.

    Article  CAS  PubMed  Google Scholar 

  63. Ibrahim, M.X., V.I. Sayin, M.K. Akula, M. Liu, L.G. Fong, S.G. Young, and M.O. Bergo. 2013. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340: 1330–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, B., S. Ghosh, X. Yang, H. Zheng, X. Liu, Z. Wang, G. Jin, B. Zheng, B.K. Kennedy, Y. Suh, M. Kaeberlein, K. Tryggvason, and Z. Zhou. 2012. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metabolism 16: 738–750.

    Article  CAS  PubMed  Google Scholar 

  65. Cheung, H.H., D. Pei, and W.Y. Chan. 2015. Stem cell aging in adult progeria. Cell Regen (London) 4: 6.

    Google Scholar 

  66. Carrero, D., C. Soria-Valles, and C. Lopez-Otin. 2016. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Disease Models and Mechanisms 9: 719–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosengardten, Y., T. McKenna, D. Grochova, and M. Eriksson. 2011. Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 10: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  68. Pacheco, L.M., L.A. Gomez, J. Dias, N.M. Ziebarth, G.A. Howard, and P.C. Schiller. 2014. Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging (Albany NY) 6: 1049–1063.

    Article  Google Scholar 

  69. Flores, I., A. Canela, E. Vera, A. Tejera, G. Cotsarelis, and M.A. Blasco. 2008. The longest telomeres: A general signature of adult stem cell compartments. Genes and Development 22: 654–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, J., Q. Lian, G. Zhu, F. Zhou, L. Sui, C. Tan, R.A. Mutalif, R. Navasankari, Y. Zhang, H.F. Tse, C.L. Stewart, and A. Colman. 2011. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8: 31–45.

    Article  CAS  PubMed  Google Scholar 

  71. Lavasani, M., A.R. Robinson, A. Lu, M. Song, J.M. Feduska, B. Ahani, J.S. Tilstra, C.H. Feldman, P.D. Robbins, L.J. Niedernhofer, and J. Huard. 2012. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nature Communications 3: 608.

    Article  PubMed  CAS  Google Scholar 

  72. Prasher, J.M., A.S. Lalai, C. Heijmans-Antonissen, R.E. Ploemacher, J.H. Hoeijmakers, I.P. Touw, and L.J. Niedernhofer. 2005. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO Journal 24: 861–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, D., L. Ou, G.D. Clemenson Jr., C. Chao, M.E. Lutske, G.P. Zambetti, F.H. Gage, and Y. Xu. 2010. Puma is required for p53-induced depletion of adult stem cells. Nature Cell Biology 12: 993–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiong, Z., Y. Lu, J. Xue, S. Luo, X. Xu, L. Zhang, H. Peng, W. Li, D. Chen, Z. Hu, and K. Xia. 2013. Hutchinson-Gilford progeria syndrome accompanied by severe skeletal abnormalities in two Chinese siblings: two case reports. Journal of Medical Case Reports 7: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liang, L., H. Zhang, and X. Gu. 2009. Homozygous LMNA mutation R527C in atypical Hutchinson-Gilford progeria syndrome: Evidence for autosomal recessive inheritance. Acta Paediatrica 98: 1365–1368.

    Article  PubMed  Google Scholar 

  76. Plasilova, M., C. Chattopadhyay, A. Ghosh, F. Wenzel, P. Demougin, C. Noppen, N. Schaub, G. Szinnai, L. Terracciano, and K. Heinimann. 2011. Discordant gene expression signatures and related phenotypic differences in lamin A- and A/C-related Hutchinson-Gilford progeria syndrome (HGPS). PLoS ONE 6: e21433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reunert, J., R. Wentzell, M. Walter, S. Jakubiczka, M. Zenker, T. Brune, S. Rust, and T. Marquardt. 2012. Neonatal progeria: Increased ratio of progerin to lamin A leads to progeria of the newborn. European Journal of Human Genetics 20: 933–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saunders, L.R., and E. Verdin. 2007. Sirtuins: Critical regulators at the crossroads between cancer and aging. Oncogene 26: 5489–5504.

    Article  CAS  PubMed  Google Scholar 

  79. Michishita, E., J.Y. Park, J.M. Burneskis, J.C. Barrett, and I. Horikawa. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell 16: 4623–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi, J.E., and R. Mostoslavsky. 2014. Sirtuins, metabolism, and DNA repair. Current Opinion in Genetics & Development 26: 24–32.

    Article  CAS  Google Scholar 

  81. Ghosh, Shrestha, and Zhongjun Zhou. "SIRTain regulators of premature senescence and accelerated aging." Protein & cell 6, no. 5 (2015): 322-333.

    Google Scholar 

  82. Giblin, W., M.E. Skinner, and D.B. Lombard. 2014. Sirtuins: Guardians of mammalian healthspan. Trends in Genetics 30: 271–286.

    Article  CAS  PubMed  Google Scholar 

  83. Rehan, L., K. Laszki-Szczachor, M. Sobieszczanska, and D. Polak-Jonkisz. 2014. SIRT1 and NAD as regulators of ageing. Life Sciences 105: 1–6.

    Article  CAS  PubMed  Google Scholar 

  84. Langley, E., M. Pearson, M. Faretta, U.M. Bauer, R.A. Frye, S. Minucci, P.G. Pelicci, and T. Kouzarides. 2002. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO Journal 21: 2383–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ota, H., M. Akishita, M. Eto, K. Iijima, M. Kaneki, and Y. Ouchi. 2007. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. Journal of Molecular and Cellular Cardiology 43: 571–579.

    Article  CAS  PubMed  Google Scholar 

  86. Menghini, R., V. Casagrande, M. Cardellini, E. Martelli, A. Terrinoni, F. Amati, M. Vasa-Nicotera, A. Ippoliti, G. Novelli, G. Melino, R. Lauro, and M. Federici. 2009. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120: 1524–1532.

    Article  CAS  PubMed  Google Scholar 

  87. Kim, M.Y., E.S. Kang, S.A. Ham, J.S. Hwang, T.S. Yoo, H. Lee, K.S. Paek, C. Park, H.T. Lee, J.H. Kim, C.W. Han, and H.G. Seo. 2012. The PPARdelta-mediated inhibition of angiotensin II-induced premature senescence in human endothelial cells is SIRT1-dependent. Biochemical Pharmacology 84: 1627–1634.

    Article  CAS  PubMed  Google Scholar 

  88. Mortuza, R., S. Chen, B. Feng, S. Sen, and S. Chakrabarti. 2013. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE 8: e54514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salvioli, S., M. Capri, L. Bucci, C. Lanni, M. Racchi, D. Uberti, M. Memo, D. Mari, S. Govoni, and C. Franceschi. 2009. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunology, Immunotherapy 58: 1909–1917.

    Article  CAS  PubMed  Google Scholar 

  90. Tran, D., J. Bergholz, H. Zhang, H. He, Y. Wang, Y. Zhang, Q. Li, J.L. Kirkland, and Z.X. Xiao. 2014. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13: 669–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yao, H., S. Chung, J.W. Hwang, S. Rajendrasozhan, I.K. Sundar, D.A. Dean, M.W. McBurney, L. Guarente, W. Gu, M. Ronty, V.L. Kinnula, and I. Rahman. 2012. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 122: 2032–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chua, K.F., R. Mostoslavsky, D.B. Lombard, W.W. Pang, S. Saito, S. Franco, D. Kaushal, H.L. Cheng, M.R. Fischer, N. Stokes, M.M. Murphy, E. Appella, and F.W. Alt. 2005. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metabolism 2: 67–76.

    Article  CAS  PubMed  Google Scholar 

  93. Abdelmohsen, K., R. Pullmann Jr., A. Lal, H.H. Kim, S. Galban, X. Yang, J.D. Blethrow, M. Walker, J. Shubert, D.A. Gillespie, H. Furneaux, and M. Gorospe. 2007. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Molecular Cell 25: 543–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaquero, A., M. Scher, D. Lee, H. Erdjument-Bromage, P. Tempst, and D. Reinberg. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular Cell 16: 93–105.

    Article  CAS  PubMed  Google Scholar 

  95. Li, K., A. Casta, R. Wang, E. Lozada, W. Fan, S. Kane, Q. Ge, W. Gu, D. Orren, and J. Luo. 2008. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. Journal of Biological Chemistry 283: 7590–7598.

    Article  CAS  PubMed  Google Scholar 

  96. Saunders, L.R., A.D. Sharma, J. Tawney, M. Nakagawa, K. Okita, S. Yamanaka, H. Willenbring, and E. Verdin. 2010. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2: 415–431.

    Article  CAS  Google Scholar 

  97. Xu, Z., L. Zhang, X. Fei, X. Yi, W. Li, and Q. Wang. 2014. The miR-29b-Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species. Cellular Signalling 26: 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  98. Rimmele, P., C.L. Bigarella, R. Liang, B. Izac, R. Dieguez-Gonzalez, G. Barbet, M. Donovan, C. Brugnara, J.M. Blander, D.A. Sinclair, and S. Ghaffari. 2014. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports 3: 44–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vassallo, P.F., S. Simoncini, I. Ligi, A.L. Chateau, R. Bachelier, S. Robert, J. Morere, S. Fernandez, B. Guillet, M. Marcelli, E. Tellier, A. Pascal, U. Simeoni, F. Anfosso, F. Magdinier, F. Dignat-George, and F. Sabatier. 2014. Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123: 2116–2126.

    Article  CAS  PubMed  Google Scholar 

  100. Yuan, H.F., C. Zhai, X.L. Yan, D.D. Zhao, J.X. Wang, Q. Zeng, L. Chen, X. Nan, L.J. He, S.T. Li, W. Yue, and X.T. Pei. 2012. SIRT1 is required for long-term growth of human mesenchymal stem cells. Journal of Molecular Medicine (Berlin) 90: 389–400.

    Article  CAS  Google Scholar 

  101. Chen, J., S. Xavier, E. Moskowitz-Kassai, R. Chen, C.Y. Lu, K. Sanduski, A. Spes, B. Turk, and M.S. Goligorsky. 2012. Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. American Journal of Pathology 180: 973–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jeong, J., K. Juhn, H. Lee, S.H. Kim, B.H. Min, K.M. Lee, M.H. Cho, G.H. Park, and K.H. Lee. 2007. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental and Molecular Medicine 39: 8–13.

    Article  CAS  PubMed  Google Scholar 

  103. Gorospe, M., and R. de Cabo. 2008. AsSIRTing the DNA damage response. Trends in Cell Biology 18: 77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luna, A., M.I. Aladjem, and K.W. Kohn. 2013. SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome Integrity 4: 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rajamohan, S.B., V.B. Pillai, M. Gupta, N.R. Sundaresan, K.G. Birukov, S. Samant, M.O. Hottiger, and M.P. Gupta. 2009. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Molecular and Cellular Biology 29: 4116–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Uhl, M., A. Csernok, S. Aydin, R. Kreienberg, L. Wiesmuller, and S.A. Gatz. 2010. Role of SIRT1 in homologous recombination. DNA Repair (Amst) 9: 383–393.

    Article  CAS  Google Scholar 

  107. Yamagata, K., and I. Kitabayashi. 2009. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX. Biochemical and Biophysical Research Communications 390: 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  108. Dobbin, M.M., R. Madabhushi, L. Pan, Y. Chen, D. Kim, J. Gao, B. Ahanonu, P.C. Pao, Y. Qiu, Y. Zhao, and L.H. Tsai. 2013. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nature Neuroscience 16: 1008–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaeberlein, M., M. McVey, and L. Guarente. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes and Development 13: 2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burnett, C., S. Valentini, F. Cabreiro, M. Goss, M. Somogyvari, M.D. Piper, M. Hoddinott, G.L. Sutphin, V. Leko, J.J. McElwee, R.P. Vazquez-Manrique, A.M. Orfila, D. Ackerman, C. Au, G. Vinti, M. Riesen, K. Howard, C. Neri, A. Bedalov, M. Kaeberlein, C. Soti, L. Partridge, and D. Gems. 2011. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477: 482–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schmeisser, K., J. Mansfeld, D. Kuhlow, S. Weimer, S. Priebe, I. Heiland, M. Birringer, M. Groth, A. Segref, Y. Kanfi, N.L. Price, S. Schmeisser, S. Schuster, A.F. Pfeiffer, R. Guthke, M. Platzer, T. Hoppe, H.Y. Cohen, K. Zarse, D.A. Sinclair, and M. Ristow. 2013. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nature Chemical Biology 9: 693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Herranz, D., M. Munoz-Martin, M. Canamero, F. Mulero, B. Martinez-Pastor, O. Fernandez-Capetillo, and M. Serrano. 2010. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1: 3.

    Article  PubMed  CAS  Google Scholar 

  113. Satoh, A., C.S. Brace, N. Rensing, P. Cliften, D.F. Wozniak, E.D. Herzog, K.A. Yamada, and S. Imai. 2013. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism 18: 416–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cheng, H.L., R. Mostoslavsky, S. Saito, J.P. Manis, Y. Gu, P. Patel, R. Bronson, E. Appella, F.W. Alt, and K.F. Chua. 2003. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 100: 10794–10799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamel, C., M. Abrol, K. Jardine, X. He, and M.W. McBurney. 2006. SirT1 fails to affect p53-mediated biological functions. Aging Cell 5: 81–88.

    Article  CAS  PubMed  Google Scholar 

  116. Kulkarni, S.S., and C. Canto. 2015. The molecular targets of resveratrol. Biochimica et Biophysica Acta 1852: 1114–1123.

    Article  CAS  PubMed  Google Scholar 

  117. Ghosh, S., B. Liu, and Z. Zhou. 2013. Resveratrol activates SIRT1 in a Lamin A-dependent manner. Cell Cycle 12: 872–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang, H.C., and L. Guarente. 2014. SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism 25: 138–145.

    Article  CAS  PubMed  Google Scholar 

  119. Chen, D., and L. Guarente. 2007. SIR2: a potential target for calorie restriction mimetics. Trends in Molecular Medicine 13: 64–71.

    Article  CAS  PubMed  Google Scholar 

  120. Min, S.W., S.H. Cho, Y. Zhou, S. Schroeder, V. Haroutunian, W.W. Seeley, E.J. Huang, Y. Shen, E. Masliah, C. Mukherjee, D. Meyers, P.A. Cole, M. Ott, and L. Gan. 2010. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67: 953–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Donmez, G., A. Arun, C.Y. Chung, P.J. McLean, S. Lindquist, and L. Guarente. 2012. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. Journal of Neuroscience 32: 124–132.

    Article  CAS  PubMed  Google Scholar 

  122. Scheibye-Knudsen, M., S.J. Mitchell, E.F. Fang, T. Iyama, T. Ward, J. Wang, C.A. Dunn, N. Singh, S. Veith, M.M. Hasan-Olive, A. Mangerich, M.A. Wilson, M.P. Mattson, L.H. Bergersen, V.C. Cogger, A. Warren, D.G. Le Couteur, R. Moaddel, D.M. Wilson 3rd, D.L. Croteau, R. de Cabo, and V.A. Bohr. 2014. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metabolism 20: 840–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hubbard, B.P., and D.A. Sinclair. 2014. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences 35: 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sinclair, D.A., and L. Guarente. 2014. Small-molecule allosteric activators of sirtuins. Annual Review of Pharmacology and Toxicology 54: 363–380.

    Article  CAS  PubMed  Google Scholar 

  125. Zhu, H., L. Zhao, E. Wang, N. Dimova, G. Liu, Y. Feng, and F. Cambi. 2012. The QKI-PLP pathway controls SIRT2 abundance in CNS myelin. Glia 60: 69–82.

    Article  CAS  PubMed  Google Scholar 

  126. de Oliveira, R.M., J. Sarkander, A.G. Kazantsev, and T.F. Outeiro. 2012. SIRT2 as a Therapeutic Target for Age-Related Disorders. Frontiers in Pharmacology 3: 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wang, F., M. Nguyen, F.X. Qin, and Q. Tong. 2007. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6: 505–514.

    Article  CAS  PubMed  Google Scholar 

  128. Wang, F., and Q. Tong. 2009. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Molecular Biology of the Cell 20: 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Y., D. Dai, Q. Lu, M. Fei, M. Li, and X. Wu. 2013. Sirt2 suppresses glioma cell growth through targeting NF-kappaB-miR-21 axis. Biochemical and Biophysical Research Communications 441: 661–667.

    Article  CAS  PubMed  Google Scholar 

  130. North, B.J., M.A. Rosenberg, K.B. Jeganathan, A.V. Hafner, S. Michan, J. Dai, D.J. Baker, Y. Cen, L.E. Wu, A.A. Sauve, J.M. van Deursen, A. Rosenzweig, and D.A. Sinclair. 2014. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO Journal 33: 1438–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nguyen, T.A., D. Menendez, M.A. Resnick, and C.W. Anderson. 2014. Mutant TP53 posttranslational modifications: Challenges and opportunities. Human Mutation 35: 738–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Patel, V.P., and C.T. Chu. 2014. Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: Implications for Parkinson’s disease. Experimental Neurology 257: 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Quinti, L., M. Casale, S. Moniot, T.F. Pais, M.J. Van Kanegan, L.S. Kaltenbach, J. Pallos, R.G. Lim, S.D. Naidu, H. Runne, L. Meisel, N.A. Rauf, D. Leyfer, M.M. Maxwell, E. Saiah, J.E. Landers, R. Luthi-Carter, R. Abagyan, A.T. Dinkova-Kostova, C. Steegborn, J.L. Marsh, D.C. Lo, L.M. Thompson, and A.G. Kazantsev. 2016. SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington’s Disease Models. Cell Chemical Biology 23: 849–861.

    Article  CAS  PubMed  Google Scholar 

  134. Jing, E., B. Emanuelli, M.D. Hirschey, J. Boucher, K.Y. Lee, D. Lombard, E.M. Verdin, and C.R. Kahn. 2011. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United State of America 108: 14608–14613.

    Article  CAS  Google Scholar 

  135. Hirschey, M.D., T. Shimazu, E. Jing, C.A. Grueter, A.M. Collins, B. Aouizerat, A. Stancakova, E. Goetzman, M.M. Lam, B. Schwer, R.D. Stevens, M.J. Muehlbauer, S. Kakar, N.M. Bass, J. Kuusisto, M. Laakso, F.W. Alt, C.B. Newgard, R.V. Farese Jr., C.R. Kahn, and E. Verdin. 2011. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular Cell 44: 177–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brown, K., S. Xie, X. Qiu, M. Mohrin, J. Shin, Y. Liu, D. Zhang, D.T. Scadden, and D. Chen. 2013. SIRT3 reverses aging-associated degeneration. Cell Rep 3: 319–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kincaid, B., and E. Bossy-Wetzel. 2013. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neuroscience 5: 48.

    Article  CAS  Google Scholar 

  138. Fu, J., J. Jin, R.H. Cichewicz, S.A. Hageman, T.K. Ellis, L. Xiang, Q. Peng, M. Jiang, N. Arbez, K. Hotaling, C.A. Ross, and W. Duan. 2012. Trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease. Journal of Biological Chemistry 287: 24460–24472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Haigis, M.C., R. Mostoslavsky, K.M. Haigis, K. Fahie, D.C. Christodoulou, A.J. Murphy, D.M. Valenzuela, G.D. Yancopoulos, M. Karow, G. Blander, C. Wolberger, T.A. Prolla, R. Weindruch, F.W. Alt, and L. Guarente. 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126: 941–954.

    Article  CAS  PubMed  Google Scholar 

  140. Laurent, G., V.C. de Boer, L.W. Finley, M. Sweeney, H. Lu, T.T. Schug, Y. Cen, S.M. Jeong, X. Li, A.A. Sauve, and M.C. Haigis. 2013. SIRT4 represses peroxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation. Molecular and Cellular Biology 33: 4552–4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ho, L., A.S. Titus, K.K. Banerjee, S. George, W. Lin, S. Deota, A.K. Saha, K. Nakamura, P. Gut, E. Verdin, and U. Kolthur-Seetharam. 2013. SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK. Aging (Albany NY) 5: 835–849.

    Article  CAS  Google Scholar 

  142. Castex, J., D. Willmann, T. Kanouni, L. Arrigoni, Y. Li, M. Friedrich, M. Schleicher, S. Wohrle, M. Pearson, N. Kraut, M. Meret, T. Manke, E. Metzger, R. Schule, and T. Gunther. 2017. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death and Disease 8: e2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lang, A., S. Grether-Beck, M. Singh, F. Kuck, S. Jakob, A. Kefalas, S. Altinoluk-Hambuchen, N. Graffmann, M. Schneider, A. Lindecke, H. Brenden, I. Felsner, H. Ezzahoini, A. Marini, S. Weinhold, A. Vierkotter, J. Tigges, S. Schmidt, K. Stuhler, K. Kohrer, M. Uhrberg, J. Haendeler, J. Krutmann, and R.P. Piekorz. 2016. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 8: 484–505.

    Article  CAS  Google Scholar 

  144. Nakagawa, T., and L. Guarente. 2009. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 1: 578–581.

    Article  CAS  Google Scholar 

  145. Rardin, M.J., W. He, Y. Nishida, J.C. Newman, C. Carrico, S.R. Danielson, A. Guo, P. Gut, A.K. Sahu, B. Li, R. Uppala, M. Fitch, T. Riiff, L. Zhu, J. Zhou, D. Mulhern, R.D. Stevens, O.R. Ilkayeva, C.B. Newgard, M.P. Jacobson, M. Hellerstein, E.S. Goetzman, B.W. Gibson, and E. Verdin. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabolism 18: 920–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shih, J., and G. Donmez. 2013. Mitochondrial sirtuins as therapeutic targets for age-related disorders. Genes Cancer 4: 91–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Glorioso, C., S. Oh, G.G. Douillard, and E. Sibille. 2011. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiology of Diseases 41: 279–290.

    Article  CAS  Google Scholar 

  148. Wang, Y., Y. Zhu, S. Xing, P. Ma, and D. Lin. 2015. SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress and Chaperones 20: 805–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kugel, S., and R. Mostoslavsky. 2014. Chromatin and beyond: The multitasking roles for SIRT6. Trends in Biochemical Sciences 39: 72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, W., and J.E. Kim. 2013. SIRT7 an emerging sirtuin: Deciphering newer roles. Journal of Physiology and Pharmacology 64: 531–534.

    CAS  PubMed  Google Scholar 

  151. Vakhrusheva, O., C. Smolka, P. Gajawada, S. Kostin, T. Boettger, T. Kubin, T. Braun, and E. Bober. 2008. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research 102: 703–710.

    Article  CAS  PubMed  Google Scholar 

  152. Vakhrusheva, O., D. Braeuer, Z. Liu, T. Braun, and E. Bober. 2008. Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. Journal of Physiology and Pharmacology 59 (Suppl 9): 201–212.

    PubMed  Google Scholar 

  153. Paredes, S., L. Villanova, and K.F. Chua. 2014. Molecular pathways: Emerging roles of mammalian Sirtuin SIRT7 in cancer. Clinical Cancer Research 20: 1741–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, J.K., J.H. Noh, K.H. Jung, J.W. Eun, H.J. Bae, M.G. Kim, Y.G. Chang, Q. Shen, W.S. Park, J.Y. Lee, J. Borlak, and S.W. Nam. 2013. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 57: 1055–1067.

    Article  CAS  PubMed  Google Scholar 

  155. Lee, N., D.K. Kim, E.S. Kim, S.J. Park, J.H. Kwon, J. Shin, S.M. Park, Y.H. Moon, H.J. Wang, Y.S. Gho, and K.Y. Choi. 2014. Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging. Proteomics 14: 1610–1622.

    Article  CAS  PubMed  Google Scholar 

  156. Shin, J., M. He, Y. Liu, S. Paredes, L. Villanova, K. Brown, X. Qiu, N. Nabavi, M. Mohrin, K. Wojnoonski, P. Li, H.L. Cheng, A.J. Murphy, D.M. Valenzuela, H. Luo, P. Kapahi, R. Krauss, R. Mostoslavsky, G.D. Yancopoulos, F.W. Alt, K.F. Chua, and D. Chen. 2013. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Reports 5: 654–665.

    Article  CAS  PubMed  Google Scholar 

  157. Yoshizawa, T., M.F. Karim, Y. Sato, T. Senokuchi, K. Miyata, T. Fukuda, C. Go, M. Tasaki, K. Uchimura, T. Kadomatsu, Z. Tian, C. Smolka, T. Sawa, M. Takeya, K. Tomizawa, Y. Ando, E. Araki, T. Akaike, T. Braun, Y. Oike, E. Bober, and K. Yamagata. 2014. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metabolism 19: 712–721.

    Article  CAS  PubMed  Google Scholar 

  158. Vazquez, B.N., J.K. Thackray, N.G. Simonet, N. Kane-Goldsmith, P. Martinez-Redondo, T. Nguyen, S. Bunting, A. Vaquero, J.A. Tischfield, and L. Serrano. 2016. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO Journal 35: 1488–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tasselli, L., W. Zheng, and K.F. Chua. 2017. SIRT6: Novel mechanisms and links to aging and disease. Trends in Endocrinology and Metabolism 28: 168–185.

    Article  CAS  PubMed  Google Scholar 

  160. Gertler, A.A., and H.Y. Cohen. 2013. SIRT6, a protein with many faces. Biogerontology 14: 629–639.

    Article  CAS  PubMed  Google Scholar 

  161. Kanfi, Y., S. Naiman, G. Amir, V. Peshti, G. Zinman, L. Nahum, Z. Bar-Joseph, and H.Y. Cohen. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483: 218–221.

    Article  CAS  PubMed  Google Scholar 

  162. Vitiello, M., A. Zullo, L. Servillo, F. P. Mancini, A. Borriello, A. Giovane, F. Della Ragione, N. D’Onofrio, and M. L. Balestrieri. 2016. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases’, Ageing Research Reviews.

    Google Scholar 

  163. Mahlknecht, U., A.D. Ho, and S. Voelter-Mahlknecht. 2006. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. International Journal of Oncology 28: 447–456.

    CAS  PubMed  Google Scholar 

  164. Tennen, R.I., E. Berber, and K.F. Chua. 2010. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mechanisms of Ageing and Development 131: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pan, P.W., J.L. Feldman, M.K. Devries, A. Dong, A.M. Edwards, and J.M. Denu. 2011. Structure and biochemical functions of SIRT6. Journal of Biological Chemistry 286: 14575–14587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jiang, H., S. Khan, Y. Wang, G. Charron, B. He, C. Sebastian, J. Du, R. Kim, E. Ge, R. Mostoslavsky, H.C. Hang, Q. Hao, and H. Lin. 2013. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496: 110–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Feldman, J.L., J. Baeza, and J.M. Denu. 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Journal of Biological Chemistry 288: 31350–31356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ardestani, P.M., and F. Liang. 2012. Sub-cellular localization, expression and functions of Sirt6 during the cell cycle in HeLa cells. Nucleus 3: 442–451.

    Article  PubMed  PubMed Central  Google Scholar 

  169. McCord, R.A., E. Michishita, T. Hong, E. Berber, L.D. Boxer, R. Kusumoto, S. Guan, X. Shi, O. Gozani, A.L. Burlingame, V.A. Bohr, and K.F. Chua. 2009. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1: 109–121.

    Article  CAS  Google Scholar 

  170. Kaidi, A., B.T. Weinert, C. Choudhary, and S.P. Jackson. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329: 1348–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mao, Z., C. Hine, X. Tian, M. Van Meter, M. Au, A. Vaidya, A. Seluanov, and V. Gorbunova. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332: 1443–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Michishita, E., R.A. McCord, E. Berber, M. Kioi, H. Padilla-Nash, M. Damian, P. Cheung, R. Kusumoto, T.L. Kawahara, J.C. Barrett, H.Y. Chang, V.A. Bohr, T. Ried, O. Gozani, and K.F. Chua. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452: 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Michishita, E., R.A. McCord, L.D. Boxer, M.F. Barber, T. Hong, O. Gozani, and K.F. Chua. 2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8: 2664–2666.

    Article  CAS  PubMed  Google Scholar 

  174. Yang, B., B.M. Zwaans, M. Eckersdorff, and D.B. Lombard. 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8: 2662–2663.

    Article  CAS  PubMed  Google Scholar 

  175. Gil, R., S. Barth, Y. Kanfi, and H.Y. Cohen. 2013. SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Research 41: 8537–8545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Toiber, D., F. Erdel, K. Bouazoune, D.M. Silberman, L. Zhong, P. Mulligan, C. Sebastian, C. Cosentino, B. Martinez-Pastor, S. Giacosa, A. D’Urso, A.M. Naar, R. Kingston, K. Rippe, and R. Mostoslavsky. 2013. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell 51: 454–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kawahara, T.L., E. Michishita, A.S. Adler, M. Damian, E. Berber, M. Lin, R.A. McCord, K.C. Ongaigui, L.D. Boxer, H.Y. Chang, and K.F. Chua. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136: 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Masri, S., P. Rigor, M. Cervantes, N. Ceglia, C. Sebastian, C. Xiao, M. Roqueta-Rivera, C. Deng, T.F. Osborne, R. Mostoslavsky, P. Baldi, and P. Sassone-Corsi. 2014. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158: 659–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cardus, A., A.K. Uryga, G. Walters, and J.D. Erusalimsky. 2013. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovascular Research 97: 571–579.

    Article  CAS  PubMed  Google Scholar 

  180. Tennen, R.I., D.J. Bua, W.E. Wright, and K.F. Chua. 2011. SIRT6 is required for maintenance of telomere position effect in human cells. Nature Communications 2: 433.

    Article  PubMed  CAS  Google Scholar 

  181. You, Z., and J.M. Bailis. 2010. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends in Cell Biology 20: 402–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liszt, G., E. Ford, M. Kurtev, and L. Guarente. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. Journal of Biological Chemistry 280: 21313–21320.

    Article  CAS  PubMed  Google Scholar 

  183. Mao, Z., X. Tian, M. Van Meter, Z. Ke, V. Gorbunova, and A. Seluanov. 2012. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proceedings of the National Academy of Sciences of the United States of America 109: 11800–11805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Meter, M., M. Simon, G. Tombline, A. May, T.D. Morello, B.P. Hubbard, K. Bredbenner, R. Park, D.A. Sinclair, V.A. Bohr, V. Gorbunova, and A. Seluanov. 2016. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Reports 16: 2641–2650.

    Article  PubMed  CAS  Google Scholar 

  185. Ronnebaum, S.M., Y. Wu, H. McDonough, and C. Patterson. 2013. The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Molecular and Cellular Biology 33: 4461–4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kaluski, S., M. Portillo, A. Besnard, D. Stein, M. Einav, L. Zhong, U. Ueberham, T. Arendt, R. Mostoslavsky, A. Sahay, and D. Toiber. 2017. Neuroprotective functions for the histone deacetylase SIRT6. Cell Reports 18: 3052–3062.

    Article  CAS  PubMed  Google Scholar 

  187. Rizzo, A., S. Iachettini, E. Salvati, P. Zizza, C. Maresca, C. D’Angelo, D. Benarroch-Popivker, A. Capolupo, F. Del Gaudio, S. Cosconati, S. Di Maro, F. Merlino, E. Novellino, C. A. Amoreo, M. Mottolese, I. Sperduti, E. Gilson, and A. Biroccio. 2016. SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage. Nucleic Acids Research.

    Google Scholar 

  188. Sebastian, C., B.M. Zwaans, D.M. Silberman, M. Gymrek, A. Goren, L. Zhong, O. Ram, J. Truelove, A.R. Guimaraes, D. Toiber, C. Cosentino, J.K. Greenson, A.I. MacDonald, L. McGlynn, F. Maxwell, J. Edwards, S. Giacosa, E. Guccione, R. Weissleder, B.E. Bernstein, A. Regev, P.G. Shiels, D.B. Lombard, and R. Mostoslavsky. 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151: 1185–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lin, Z., H. Yang, C. Tan, J. Li, Z. Liu, Q. Quan, S. Kong, J. Ye, B. Gao, and D. Fang. 2013. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Reports 5: 1639–1649.

    Article  CAS  PubMed  Google Scholar 

  190. Thirumurthi, U., J. Shen, W. Xia, A. M. LaBaff, Y. Wei, C. W. Li, W. C. Chang, C. H. Chen, H. K. Lin, D. Yu, and M. C. Hung. 2014. MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer’, Science Signaling, 7: ra71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Van Meter, M., Z. Mao, V. Gorbunova, and A. Seluanov. 2011. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10: 3153–3158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Tao, N.N., J.H. Ren, H. Tang, L.K. Ran, H.Z. Zhou, B. Liu, A.L. Huang, and J. Chen. 2017. Deacetylation of Ku70 by SIRT6 attenuates Bax-mediated apoptosis in hepatocellular carcinoma. Biochemical and Biophysical Research Communications 485: 713–719.

    Article  CAS  PubMed  Google Scholar 

  193. Ioris, R.M., M. Galie, G. Ramadori, J.G. Anderson, A. Charollais, G. Konstantinidou, X. Brenachot, E. Aras, A. Goga, N. Ceglia, C. Sebastian, D. Martinvalet, R. Mostoslavsky, P. Baldi, and R. Coppari. 2017. SIRT6 suppresses cancer stem-like capacity in tumors with PI3K activation independently of its deacetylase activity. Cell Reports 18: 1858–1868.

    Article  CAS  PubMed  Google Scholar 

  194. Han, Z., L. Liu, Y. Liu, and S. Li. 2014. Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. International Journal of Clinical and Experimental Pathology 7: 4774–4781.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Khan, M.A., H.C. Chen, D. Zhang, and J. Fu. 2013. Twist: a molecular target in cancer therapeutics. Tumour Biology 34: 2497–2506.

    Article  CAS  PubMed  Google Scholar 

  196. Cai, Y., Z.Y. Sheng, and S.X. Liang. 2014. Radiosensitization effect of overexpression of adenovirus-mediated SIRT6 on A549 non-small cell lung cancer cells. Asian Pacific Journal of Cancer Prevention 15: 7297–7301.

    Article  PubMed  Google Scholar 

  197. Ma, W., L.J. Stafford, D. Li, J. Luo, X. Li, G. Ning, and M. Liu. 2007. GCIP/CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. Journal of Cellular Biochemistry 100: 1376–1386.

    Article  CAS  PubMed  Google Scholar 

  198. Bhardwaj, A., and S. Das. 2016. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions. Proceedings of the National Academy of Sciences of the United States of America 113: E538–E547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kugel, S., C. Sebastian, J. Fitamant, K.N. Ross, S.K. Saha, E. Jain, A. Gladden, K.S. Arora, Y. Kato, M.N. Rivera, S. Ramaswamy, R.I. Sadreyev, A. Goren, V. Deshpande, N. Bardeesy, and R. Mostoslavsky. 2016. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell 165: 1401–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Etchegaray, J.P., L. Zhong, and R. Mostoslavsky. 2013. The histone deacetylase SIRT6: At the crossroads between epigenetics, metabolism and disease. Current Topics in Medicinal Chemistry 13: 2991–3000.

    Article  CAS  PubMed  Google Scholar 

  201. Ming, M., W. Han, B. Zhao, N.R. Sundaresan, C.X. Deng, M.P. Gupta, and Y.Y. He. 2014. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Research 74: 5925–5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lee, N., H.G. Ryu, J.H. Kwon, D.K. Kim, S.R. Kim, H.J. Wang, K.T. Kim, and K.Y. Choi. 2016. SIRT6 depletion suppresses tumor growth by promoting cellular senescence induced by DNA damage in HCC. PLoS ONE 11: e0165835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Zhong, L., A. D’Urso, D. Toiber, C. Sebastian, R.E. Henry, D.D. Vadysirisack, A. Guimaraes, B. Marinelli, J.D. Wikstrom, T. Nir, C.B. Clish, B. Vaitheesvaran, O. Iliopoulos, I. Kurland, Y. Dor, R. Weissleder, O.S. Shirihai, L.W. Ellisen, J.M. Espinosa, and R. Mostoslavsky. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140: 280–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Imanirad, P., and E. Dzierzak. 2013. Hypoxia and HIFs in regulating the development of the hematopoietic system. Blood Cells, Molecules, and Diseases 51: 256–263.

    Article  CAS  PubMed  Google Scholar 

  205. Sundaresan, N.R., P. Vasudevan, L. Zhong, G. Kim, S. Samant, V. Parekh, V.B. Pillai, P.V. Ravindra, M. Gupta, V. Jeevanandam, J.M. Cunningham, C.X. Deng, D.B. Lombard, R. Mostoslavsky, and M.P. Gupta. 2012. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine 18: 1643–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dominy Jr., J.E., Y. Lee, M.P. Jedrychowski, H. Chim, M.J. Jurczak, J.P. Camporez, H.B. Ruan, J. Feldman, K. Pierce, R. Mostoslavsky, J.M. Denu, C.B. Clish, X. Yang, G.I. Shulman, S.P. Gygi, and P. Puigserver. 2012. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Molecular Cell 48: 900–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shoag, J., and Z. Arany. 2010. Regulation of hypoxia-inducible genes by PGC-1 alpha. Arteriosclerosis, Thrombosis, And Vascular Biology 30: 662–666.

    Article  CAS  PubMed  Google Scholar 

  208. Kim, H.S., C. Xiao, R.H. Wang, T. Lahusen, X. Xu, A. Vassilopoulos, G. Vazquez-Ortiz, W.I. Jeong, O. Park, S.H. Ki, B. Gao, and C.X. Deng. 2010. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metabolism 12: 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Elhanati, S., Y. Kanfi, A. Varvak, A. Roichman, I. Carmel-Gross, S. Barth, G. Gibor, and H.Y. Cohen. 2013. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Reports 4: 905–912.

    Article  CAS  PubMed  Google Scholar 

  210. Zhang, P., B. Tu, H. Wang, Z. Cao, M. Tang, C. Zhang, B. Gu, Z. Li, L. Wang, Y. Yang, Y. Zhao, H. Wang, J. Luo, C.X. Deng, B. Gao, R.G. Roeder, and W.G. Zhu. 2014. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America 111: 10684–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schwer, B., B. Schumacher, D.B. Lombard, C. Xiao, M.V. Kurtev, J. Gao, J.I. Schneider, H. Chai, R.T. Bronson, L.H. Tsai, C.X. Deng, and F.W. Alt. 2010. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proceedings of the National Academy of Sciences of the United States of America 107: 21790–21794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kawahara, T.L., N.A. Rapicavoli, A.R. Wu, K. Qu, S.R. Quake, and H.Y. Chang. 2011. Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genetics 7: e1002153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Grimley, R., O. Polyakova, J. Vamathevan, J. McKenary, B. Hayes, C. Patel, J. Smith, A. Bridges, A. Fosberry, A. Bhardwaja, B. Mouzon, C.W. Chung, N. Barrett, N. Richmond, S. Modha, and R. Solari. 2012. Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFkappaB responses. PLoS ONE 7: e39847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Van Meter, M., M. Kashyap, S. Rezazadeh, A.J. Geneva, T.D. Morello, A. Seluanov, and V. Gorbunova. 2014. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nature Communications 5: 5011.

    Article  PubMed  CAS  Google Scholar 

  215. Tasselli, L., Y. Xi, W. Zheng, R.I. Tennen, Z. Odrowaz, F. Simeoni, W. Li, and K.F. Chua. 2016. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nature Structural and Molecular Biology 23: 434–440.

    Article  CAS  PubMed  Google Scholar 

  216. Takasaka, N., J. Araya, H. Hara, S. Ito, K. Kobayashi, Y. Kurita, H. Wakui, Y. Yoshii, Y. Yumino, S. Fujii, S. Minagawa, C. Tsurushige, J. Kojima, T. Numata, K. Shimizu, M. Kawaishi, Y. Kaneko, N. Kamiya, J. Hirano, M. Odaka, T. Morikawa, S.L. Nishimura, K. Nakayama, and K. Kuwano. 2014. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology 192: 958–968.

    Article  CAS  PubMed  Google Scholar 

  217. Schiaffino, S., and C. Mammucari. 2011. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skeletal Muscle 1: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Liu, Z., J. Wang, X. Huang, Z. Li, and P. Liu. 2016. Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice. Translational Research 172 (18–29): e2.

    Google Scholar 

  219. Sahin, K., S. Yilmaz, and N. Gozukirmizi. 2014. Changes in human sirtuin 6 gene promoter methylation during aging. Biomedical Reports 2: 574–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhang, D.M., D.X. Cui, R.S. Xu, Y.C. Zhou, L.W. Zheng, P. Liu, and X.D. Zhou. 2016. Phenotypic research on senile osteoporosis caused by SIRT6 deficiency. International Journal of Oral Science 8: 84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang, N., Z. Li, W. Mu, L. Li, Y. Liang, M. Lu, Z. Wang, Y. Qiu, and Z. Wang. 2016. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling. Cell Cycle 15: 1009–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Van Gool, F., M. Galli, C. Gueydan, V. Kruys, P.P. Prevot, A. Bedalov, R. Mostoslavsky, F.W. Alt, T. De Smedt, and O. Leo. 2009. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nature Medicine 15: 206–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Bauer, I., A. Grozio, D. Lasiglie, G. Basile, L. Sturla, M. Magnone, G. Sociali, D. Soncini, I. Caffa, A. Poggi, G. Zoppoli, M. Cea, G. Feldmann, R. Mostoslavsky, A. Ballestrero, F. Patrone, S. Bruzzone, and A. Nencioni. 2012. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. Journal of Biological Chemistry 287: 40924–40937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Xiao, C., R.H. Wang, T.J. Lahusen, O. Park, A. Bertola, T. Maruyama, D. Reynolds, Q. Chen, X. Xu, H.A. Young, W.J. Chen, B. Gao, and C.X. Deng. 2012. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. Journal of Biological Chemistry 287: 41903–41913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. Journal of Clinical Investigation 107: 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lee, H.S., S.O. Ka, S.M. Lee, S.I. Lee, J.W. Park, and B.H. Park. 2013. Overexpression of sirtuin 6 suppresses inflammatory responses and bone destruction in mice with collagen-induced arthritis. Arthritis and Rheumatism 65: 1776–1785.

    Article  CAS  PubMed  Google Scholar 

  227. Lappas, M. 2012. Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators of Inflammation 2012: 597514.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Liu, T.F., V.T. Vachharajani, B.K. Yoza, and C.E. McCall. 2012. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. Journal of Biological Chemistry 287: 25758–25769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Fernandez-Hernando, C., and K.J. Moore. 2011. MicroRNA modulation of cholesterol homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 2378–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Davalos, A., L. Goedeke, P. Smibert, C.M. Ramirez, N.P. Warrier, U. Andreo, D. Cirera-Salinas, K. Rayner, U. Suresh, J.C. Pastor-Pareja, E. Esplugues, E.A. Fisher, L.O. Penalva, K.J. Moore, Y. Suarez, E.C. Lai, and C. Fernandez-Hernando. 2011. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences of the United States of America 108: 9232–9237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lefort, K., Y. Brooks, P. Ostano, M. Cario-Andre, V. Calpini, J. Guinea-Viniegra, A. Albinger-Hegyi, W. Hoetzenecker, I. Kolfschoten, E.F. Wagner, S. Werner, and G.P. Dotto. 2013. A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO Journal 32: 2248–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sharma, A., S. Diecke, W.Y. Zhang, F. Lan, C. He, N.M. Mordwinkin, K.F. Chua, and J.C. Wu. 2013. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. Journal of Biological Chemistry 288: 18439–18447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Elhanati, S., R. Ben-Hamo, Y. Kanfi, A. Varvak, R. Glazz, B. Lerrer, S. Efroni, and H.Y. Cohen. 2016. Reciprocal Regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis. Cell Reports 14: 234–242.

    Article  CAS  PubMed  Google Scholar 

  234. Etchegaray, J.P., L. Chavez, Y. Huang, K.N. Ross, J. Choi, B. Martinez-Pastor, R.M. Walsh, C.A. Sommer, M. Lienhard, A. Gladden, S. Kugel, D.M. Silberman, S. Ramaswamy, G. Mostoslavsky, K. Hochedlinger, A. Goren, A. Rao, and R. Mostoslavsky. 2015. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nature Cell Biology 17: 545–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pan, H., D. Guan, X. Liu, J. Li, L. Wang, J. Wu, J. Zhou, W. Zhang, R. Ren, W. Zhang, Y. Li, J. Yang, Y. Hao, T. Yuan, G. Yuan, H. Wang, Z. Ju, Z. Mao, J. Li, J. Qu, F. Tang, and G.H. Liu. 2016. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research 26: 190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Chen, W., N. Liu, H. Zhang, H. Zhang, J. Qiao, W. Jia, S. Zhu, Z. Mao, and J. Kang. 2017. Sirt6 Promotes DNA end joining in iPSCs derived from old mice. Cell Reports 18: 2880–2892.

    Article  CAS  PubMed  Google Scholar 

  237. Silberman, D.M., K. Ross, P.H. Sande, S. Kubota, S. Ramaswamy, R.S. Apte, and R. Mostoslavsky. 2014. SIRT6 is required for normal retinal function. PLoS ONE 9: e98831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Polyakova, O., S. Borman, R. Grimley, J. Vamathevan, B. Hayes, and R. Solari. 2012. Identification of novel interacting partners of Sirtuin6. PLoS ONE 7: e51555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chen, Q., W. Hao, C. Xiao, R. Wang, X. Xu, H. Lu, W. Chen, and C.X. Deng. 2017. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Reports 18: 3155–3166.

    Article  CAS  PubMed  Google Scholar 

  240. Zhang, X., W. Li, P. Shen, X. Feng, Z. Yue, J. Lu, J. You, J. Li, H. Gao, S. Fang, Z. Li, and P. Liu. 2016. STAT3 suppression is involved in the protective effect of SIRT6 against cardiomyocyte hypertrophy. Journal of Cardiovascular Pharmacology 68: 204–214.

    Article  CAS  PubMed  Google Scholar 

  241. Han, L., J. Ge, L. Zhang, R. Ma, X. Hou, B. Li, K. Moley, and Q. Wang. 2015. Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Scientific Reports 5: 15366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Parenti, M.D., A. Grozio, I. Bauer, L. Galeno, P. Damonte, E. Millo, G. Sociali, C. Franceschi, A. Ballestrero, S. Bruzzone, A. Del Rio, and A. Nencioni. 2014. Discovery of novel and selective SIRT6 inhibitors. Journal of Medicinal Chemistry 57: 4796–4804.

    Article  CAS  PubMed  Google Scholar 

  243. Yasuda, M., D.R. Wilson, S.D. Fugmann, and R. Moaddel. 2011. Synthesis and characterization of SIRT6 protein coated magnetic beads: Identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Analytical Chemistry 83: 7400–7407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ravichandran, S., N. Singh, D. Donnelly, M. Migliore, P. Johnson, C. Fishwick, B.T. Luke, B. Martin, S. Maudsley, S.D. Fugmann, and R. Moaddel. 2014. Pharmacophore model of the quercetin binding site of the SIRT6 protein. Journal of Molecular Graphics and Modelling 49: 38–46.

    Article  CAS  PubMed  Google Scholar 

  245. Singh, N., S. Ravichandran, D.D. Norton, S.D. Fugmann, and R. Moaddel. 2013. Synthesis and characterization of a SIRT6 open tubular column: predicting deacetylation activity using frontal chromatography. Analytical Biochemistry 436: 78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Miteva, Y.V., and I.M. Cristea. 2014. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Molecular and Cellular Proteomics 13: 168–183.

    Article  CAS  PubMed  Google Scholar 

  247. Bae, J.S., S.H. Park, U. Jamiyandorj, K.M. Kim, S.J. Noh, J.R. Kim, H.J. Park, K.S. Kwon, S.H. Jung, H.S. Park, B.H. Park, H. Lee, W.S. Moon, K.G. Sylvester, and K.Y. Jang. 2016. CK2alpha/CSNK2A1 phosphorylates SIRT6 and is involved in the progression of breast carcinoma and predicts shorter survival of diagnosed patients. American Journal of Pathology 186: 3297–3315.

    Article  CAS  PubMed  Google Scholar 

  248. Hu, S., H. Liu, Y. Ha, X. Luo, M. Motamedi, M.P. Gupta, J.X. Ma, R.G. Tilton, and W. Zhang. 2015. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radical Biology and Medicine 79: 176–185.

    Article  CAS  PubMed  Google Scholar 

  249. Cai, J., Y. Zuo, T. Wang, Y. Cao, R. Cai, F.L. Chen, J. Cheng, and J. Mu. 2016. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene 35: 4949–4956.

    Article  CAS  PubMed  Google Scholar 

  250. Vousden, K.H., and C. Prives. 2009. Blinded by the light: The growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  251. Jacks, T., L. Remington, B.O. Williams, E.M. Schmitt, S. Halachmi, R.T. Bronson, and R.A. Weinberg. 1994. Tumor spectrum analysis in p53-mutant mice. Current Biology 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  252. Donehower, L.A., M. Harvey, B.L. Slagle, M.J. McArthur, C.A. Montgomery Jr., J.S. Butel, and A. Bradley. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  253. Donehower, L.A., and G. Lozano. 2009. 20 years studying p53 functions in genetically engineered mice. Nature Reviews Cancer 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  254. Garcia, P.B., and L.D. Attardi. 2014. Illuminating p53 function in cancer with genetically engineered mouse models. Seminars in Cell & Developmental Biology 27: 74–85.

    Article  CAS  Google Scholar 

  255. Gu, B., and W.G. Zhu. 2012. Surf the post-translational modification network of p53 regulation. International Journal of Biological Sciences 8: 672–684.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Chao, C.C. 2015. Mechanisms of p53 degradation. Clinica Chimica Acta 438: 139–147.

    Article  CAS  Google Scholar 

  257. Raj, N., and L. D. Attardi. 2017. The transactivation domains of the p 53 Protein’, Cold Spring Harbor Perspectives in Medicine, 7.

    Google Scholar 

  258. Donehower, L.A. 2009. Using mice to examine p53 functions in cancer, aging, and longevity. Cold Spring Harbor Perspectives in Biology 1: a001081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Reed, S.M., and D.E. Quelle. 2014. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 7: 30–69.

    Article  CAS  Google Scholar 

  260. Kruse, J.P., and W. Gu. 2009. Modes of p53 regulation. Cell 137: 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Marouco, D., A.V. Garabadgiu, G. Melino, and N.A. Barlev. 2013. Lysine-specific modifications of p53: a matter of life and death? Oncotarget 4: 1556–1571.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Poyurovsky, M.V., and C. Prives. 2010. P53 and aging: A fresh look at an old paradigm. Aging (Albany NY) 2: 380–382.

    Article  CAS  Google Scholar 

  263. Varela, I., J. Cadinanos, A.M. Pendas, A. Gutierrez-Fernandez, A.R. Folgueras, L.M. Sanchez, Z. Zhou, F.J. Rodriguez, C.L. Stewart, J.A. Vega, K. Tryggvason, J.M. Freije, and C. Lopez-Otin. 2005. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437: 564–568.

    Article  CAS  PubMed  Google Scholar 

  264. Amir, H., T. Touboul, K. Sabatini, D. Chhabra, I. Garitaonandia, J. F. Loring, R. Morey, and L. C. Laurent. 2016. Spontaneous single-copy loss of TP53 in Human embryonic stem cells markedly increases cell proliferation and survival. Stem Cells.

    Google Scholar 

  265. Kim, R.H., M.K. Kang, T. Kim, P. Yang, S. Bae, D.W. Williams, S. Phung, K.H. Shin, C. Hong, and N.H. Park. 2015. Regulation of p53 during senescence in normal human keratinocytes. Aging Cell 14: 838–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Momand, J., G.P. Zambetti, D.C. Olson, D. George, and A.J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  267. Wu, X., J.H. Bayle, D. Olson, and A.J. Levine. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes and Development 7: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  268. Brooks, C.L., and W. Gu. 2011. The impact of acetylation and deacetylation on the p53 pathway. Protein and Cell 2: 456–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Appella, E., and C.W. Anderson. 2000. Signaling to p53: Breaking the posttranslational modification code. Pathologie Biologie 48: 227–245.

    CAS  PubMed  Google Scholar 

  270. Gu, W., and R.G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  271. Sen, N., R. Kumari, M.I. Singh, and S. Das. 2013. HDAC5, a key component in temporal regulation of p53-mediated transactivation in response to genotoxic stress. Molecular Cell 52: 406–420.

    Article  CAS  PubMed  Google Scholar 

  272. Donehower, L.A. 2002. Does p53 affect organismal aging? Journal of Cellular Physiology 192: 23–33.

    Article  CAS  PubMed  Google Scholar 

  273. Hinkal, G.W., C.E. Gatza, N. Parikh, and L.A. Donehower. 2009. Altered senescence, apoptosis, and DNA damage response in a mutant p53 model of accelerated aging. Mechanisms of Ageing and Development 130: 262–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Sociali, G., L. Galeno, M.D. Parenti, A. Grozio, I. Bauer, M. Passalacqua, S. Boero, A. Donadini, E. Millo, M. Bellotti, L. Sturla, P. Damonte, A. Puddu, C. Ferroni, G. Varchi, C. Franceschi, A. Ballestrero, A. Poggi, S. Bruzzone, A. Nencioni, and A. Del Rio. 2015. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry 102: 530–539.

    Article  CAS  PubMed  Google Scholar 

  275. Liu, J., and W. Zheng. 2016. Cyclic peptide-based potent human SIRT6 inhibitors. Organic and Biomolecular Chemistry 14: 5928–5935.

    Article  CAS  PubMed  Google Scholar 

  276. Redwood, A.B., S.M. Perkins, R.P. Vanderwaal, Z. Feng, K.J. Biehl, I. Gonzalez-Suarez, L. Morgado-Palacin, W. Shi, J. Sage, J.L. Roti-Roti, C.L. Stewart, J. Zhang, and S. Gonzalo. 2011. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10: 2549–2560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Jung, E.S., H. Choi, H. Song, Y.J. Hwang, A. Kim, H. Ryu, and I. Mook-Jung. 2016. p53-dependent SIRT6 expression protects Abeta42-induced DNA damage. Scientific Reports 6: 25628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrestha Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S. (2019). Introduction. In: SIRT6 Activities in DNA Damage Repair and Premature Aging. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9267-3_1

Download citation

Publish with us

Policies and ethics