Skip to main content

Debridement

  • Chapter
  • First Online:
  • 1386 Accesses

Abstract

Debridement plays a major role in wound management, it is a complete science. It requires expertise to know when to debride, how much to debride and when not to debride. Simple debridement with gauze and scoop is helped by advances in debridement technology like whirlpool, water pressure devices, water knife, ultra sound, laser, etc. Advances in dressing materials provides environment for better autolytic debridement. Maggot therapy is an age old biological debriding therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Falanga V. Growth factors and chronic wounds: the need to understand the microenvironment. J Dermatol. 1992;19:667.

    Article  CAS  Google Scholar 

  2. Edwards R, Harding KG. Bacteria and wound healing. Curt Opin Inf Dis. 2004;17:19.

    Google Scholar 

  3. Armstrong DA. Clinical care of diabetic foot. Chapter 7. 2005.

    Google Scholar 

  4. Caselli A, Latini V, Lapenna A, et al. Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischemic foot ulcers. Diabet Med. 2005;22(4):460–5.

    Article  CAS  Google Scholar 

  5. Wyss CR, Robertson C, Love SJ, et al. Relationship between transcutaneous oxygen tension, ankle bllo pressure, and clinical outcome of vascular surgery in diabetic and nondiabetic patients. Surgery. 1987;101(1):56–62.

    CAS  Google Scholar 

  6. Haynes LJ, Brown MH, Handley BC. Comparison of Pulsavac and sterile whirlpool regarding the promotion of tissue granulation. Phys Ther. 1994;74:S4.

    Google Scholar 

  7. Tao H, Butler J, Luttrell T. The role of whirlpool in wound care. J Am Coll Clin Wound Spec. 2012;4(1):7–12.

    Article  Google Scholar 

  8. Perry A, Potter P, Ostendorf W. Clinical Nursing Skills and Techniques. 8th ed. Elsevier Health Sciences; 2013.

    Google Scholar 

  9. Bohannon RW. Whirlpool versus whirlpool and rinse for removal of bacteria from a venous stasis ulcer. J Am Phys The Assoc. 1982;62:304–8.

    CAS  Google Scholar 

  10. Burke D, Ho C, Saucier M, Stewart G. Effects of hydrotherapy on pressure ulcer healing. Am J Phys Med Rehabil. 1998;77(5):394–8.

    Article  CAS  Google Scholar 

  11. Gogia PP, Hurt BS, Zirn TT. Wound management with whirlpool and infrared cold laser treatment: a clinical report. Phys Ther. 1988;68:1239–42.

    CAS  Google Scholar 

  12. Luedtke-Hoffmann KA, Schafer DS. Pulsed lavage in wound cleansing. Phys Ther. 2000;80:292–300.

    CAS  Google Scholar 

  13. Hess CL, Howard MA, Attinger CE. A review of mechanical adjuncts in wound healing: hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann Plastic Surg. 2003;51(2):210–8.

    Article  Google Scholar 

  14. Kloth LC, Feedar JA. Acceleration of wound healing with high voltage, monophasic, pulsed current. Phys Ther. 1988;68(4):503–8.

    Article  CAS  Google Scholar 

  15. Gogia PP, Hurt BS, Zirn TT. Wound management with whirlpool and infrared cold laser treatment. Phys Ther. 1988;68(8):1239–42.

    CAS  Google Scholar 

  16. David G Armstrong. Clinical care of diabetic foot. Chapter 7. 2005.

    Google Scholar 

  17. Crosskey RW. Introduction to the Diptera. In: Lane RP, Crosskey RW, editors. Medical insects and arachnids. London: Chapman & Hall; 1995.

    Google Scholar 

  18. Evans H. A treatment of last resort. Nurs Times. 1997;93:62–64,65.

    CAS  Google Scholar 

  19. Sherman RA, Wyle FA, Thrupp L. Effects of seven antibiotics on the growth and development of Phaenicia sericata larvae. J Med Entomol. 1995;32:646–9.

    Article  CAS  Google Scholar 

  20. Thomas S, Jones M. Maggots and the battle against MRSA. Bridgend: The Surgical Material Testing Laboratory; 2000.

    Google Scholar 

  21. Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus. Microbes Infect. 2004;6:1297–304.

    Article  CAS  Google Scholar 

  22. Armstrong J, Zhang L, McClellan AD. Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey. Exp Neurol. 2003;180:156–66.

    Article  Google Scholar 

  23. Lerch K, Linde HJ, Lehn N Grifka J. Bacteria ingestion by blowfly larvae: an in vitro study. Dermatology. 2003;207:362–6.

    Article  Google Scholar 

  24. Robinson W, Norwood VH. Destruction of pyogenic bacteria in the alimentary tract of surgical maggots implanted in infected wounds. J Lab Clin Med. 1934;19:581–6.

    Google Scholar 

  25. Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M. Destruction of bacteria in the digestive tract of the maggots of Lucilia sericata. J Med Entomol. 2001;38:161–6.

    Article  CAS  Google Scholar 

  26. Prete P. Growth effects of Phaenicia sericata larval extracts on fibroblast: mechanism for wound healing by maggot therapy. Life Sci. 1997;60:505–10.

    Article  CAS  Google Scholar 

  27. Sinclair RD, Ryan TJ. Types of chronic wounds: indications for enzymatic debridement. In: Westerhof W, Vanscheidt W, editors. Proteolytic enzymes and wound healing. Berlin: Springer Verlag; 1994. p. 7–21.

    Chapter  Google Scholar 

  28. Himel H. Wound healing: focus on the chronic wound. Wounds. 1995;7(Suppl A):70A–7A.

    Google Scholar 

  29. Donati L. Surgical versus enzymatic debridement. In: Westerhof W, Vanscheidt W, editors. Proteolytic enzymes and wound healing. Berlin: Springer; 1994. p. 31–47.

    Chapter  Google Scholar 

  30. Baharestani M. The clinical relevance of debridement. In: Baharestani M, Gottrup F, Vanscheidt W, editors. The clinical relevance of debridement. Berlin: Springer Verlag; 1999. p. 1–13.

    Google Scholar 

  31. Dealey C. The care of wounds. Oxford: Blackwell Scientific Publications; 1994.

    Google Scholar 

  32. Vowden KR, Vowden P. Wound debridement, Part 2: Sharp techniques. J Wound Care. 1999;8:291–4.

    Article  CAS  Google Scholar 

  33. Doughty P. Principles of wound healing and wound management. In: Bryant RA, editor. Acute and chronic wounds: nursing management. St. Louis: Mosby Year book; 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vachhrajani, V., Khakhkhar, P. (2020). Debridement. In: Science of Wound Healing and Dressing Materials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9236-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9236-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9235-2

  • Online ISBN: 978-981-32-9236-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics