Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 210 Accesses

Abstract

The maturity of geochronological techniques in recent years, e.g. (semi-)automated fission-track analysis [1] and laser-ablation systems [2], made large data sets more effectively available in shorter analyses times at an acceptable cost of precision and accuracy. Complex geological systems harbouring multiple age populations, typical in sedimentary provenance studies, instinctively require statistically robust large numbers of single geochronological analyses per sample in order to approximate the ideal age distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21(4):575–580

    Article  Google Scholar 

  2. Sylvester PJ (2008) Laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues, vol. 40. Mineralogical Association of Canada

    Google Scholar 

  3. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216(3–4):249–270

    Article  Google Scholar 

  4. Dodson MH, Compston W, Williams IS, Wilson JF (1988) A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc 145(6):977–983

    Article  Google Scholar 

  5. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3–4):441–451

    Article  Google Scholar 

  6. Sircombe KN (2004) AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31

    Article  Google Scholar 

  7. Gehrels GE (2000) Introduction to detrital zircon studies of Paleozoic and Triassic strata in Western Nevada and Northern California. Geol Soc Am Spec Pap 347:1–17

    Google Scholar 

  8. Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B, Pecha M (2011) Detrital zircon U–Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3(3):183–200

    Article  Google Scholar 

  9. Yang J, Gao S, Chen C, Tang Y, Yuan H, Gong H, Xie S, Wang J (2009) Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim Cosmochim Acta 73(9):2660–2673

    Article  Google Scholar 

  10. Shannon CE, Weaver W (1971) The mathematical theory of communication. University of Illinois Press, Illinois

    Google Scholar 

  11. Titterington DM, Smith AF, Makov UE (1985) Statistical analysis of finite mixture distributions, vol 7. Wiley, New York

    Google Scholar 

  12. Ludwig K (2008) Manual for Isoplot 3.7. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  13. Sambridge M, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128(3–4):373–390

    Article  Google Scholar 

  14. Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146

    Article  Google Scholar 

  15. Boltzmann L (1872) Weitere studien über das wärmegleichgewicht unter gasmolekülen, (pp. 270–370). Number 66. Sitzungsberichte Akademie der Wissenschaften: Wien

    Google Scholar 

  16. Tolman R (1938) The principles of statistical mechanics. Courier Dover Publications, New York

    Google Scholar 

  17. Bischoff JL, Williams RW, Rosenbauer RJ, Aramburu A, Arsuaga JL, García N, Cuenca-Bescós G (2007) High-resolution U-series dates from the Sima de los Huesos hominids yields: implications for the evolution of the early Neanderthal lineage. J Archaeol Sci 34(5):763–770

    Article  Google Scholar 

  18. Valenti JA, Fischer DA (2005) Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs. Astrophys J Suppl Ser 159(1):141

    Google Scholar 

  19. Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M (2011) Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res 19(3):751–763. Their role in growth of accretionary orogens and mineral endowment, Island Arcs

    Google Scholar 

  20. Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Quadt AV, Roddick J, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Google Scholar 

  21. Patterson C (1956) Age of meteorites and the earth. Geochim Cosmochim Acta 10(4):230–237

    Article  Google Scholar 

  22. Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem (mostly) solved. Geol Soc, Lond, Spec Publ 190(1):205–221

    Article  Google Scholar 

  23. Jones S, Martin RD, Pilbeam D, Bunney S, Dawkins R (1992) The Cambridge encyclopedia of human evolution. Cambridge University Press, Cambridge

    Google Scholar 

  24. Ruse M, Travis JX (2009) Evolution: the first four billion years. Harvard University Press, Cambrigde, Massachusetts

    Google Scholar 

  25. Planck Collaboration (2014) Planck 2013 results. I. Overview of products and scientific results. Astron Astrophys 571:A1

    Google Scholar 

  26. Bennett C, Larson D, Weiland J, Jarosik N, Hinshaw G, Odegard N, Smith K, Hill R, Gold B, Halpern M (2013) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys J Suppl Ser 208(2):20

    Article  Google Scholar 

  27. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125

    Article  Google Scholar 

  28. Cha S (2007) Comprehensive survey on distance/similarity measures between probability/density functions. Int J Math Model Methods Appl Sci 1(4):300–307

    Google Scholar 

  29. Xiao W, Windley BF, Hao J, Zhai M (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22(6)

    Google Scholar 

  30. Cope T, Ritts BD, Darby BJ, Fildani A, Graham SA (2005) Late Paleozoic sedimentation on the northern margin of the North China Block: implications for regional tectonics and climate change. Int Geol Rev 47(3):270–296

    Article  Google Scholar 

  31. Jian P, Liu D, Kröner A, Windley BF, Shi Y, Zhang F, Shi G, Miao L, Zhang W, Zhang Q, Zhang L, Ren J (2008) Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos 101(3–4):233–259

    Article  Google Scholar 

  32. Jian P, Liu D, Kröner A, Windley BF, Shi Y, Zhang W, Zhang F, Miao L, Zhang L, Tomurhuu D (2010) Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118(1–2):169–190

    Article  Google Scholar 

  33. Zhang S-H, Zhao Y, Ye H, Liu J-M, Hu Z-C (2014b) Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol Soc Am Bull 126(9–10):1275–1300

    Article  Google Scholar 

  34. Dickinson W (1995) Forearc basins. Tectonics of sedimentary basins. Blackwell Science, Oxford, pp 221–261

    Google Scholar 

  35. Underwood M, Moore G (1995) Trenches and trench-slope basins. Tectonics Sediment Basins 179–219

    Google Scholar 

  36. Leeder MR (2001) Sedimentology and sedimentary basins: from turbulence to tectonics. Blackwell Science, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Eizenhöfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eizenhöfer, P.R. (2020). Geochronological Entropy, and Its Relevance to Age Measurements. In: Subduction and Closure of the Palaeo-Asian Ocean along the Solonker Suture Zone: Constraints from an Integrated Sedimentary Provenance Analysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9200-0_5

Download citation

Publish with us

Policies and ethics