Skip to main content

Methodology

  • Chapter
  • First Online:
  • 193 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Clastic sedimentary rocks are a unique geological archive, which contain crucial geological information on the sedimentary depositional environment, the tectonic setting, the sedimentary provenance terranes, and the relative palaeo-geographic positions of sedimentary basins and their respective catchments. The broad field of sedimentary provenance analysis integrates a large variety of analytical tools to reconstruct the geological framework of sedimentary rock formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216(3–4):249–270

    Article  Google Scholar 

  2. Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1–2):243–258

    Article  Google Scholar 

  3. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57

    Article  Google Scholar 

  4. Cha S (2007) Comprehensive survey on distance/similarity measures between probability/density functions. Int J Math Model Methods Appl Sci 1(4):300–307

    Google Scholar 

  5. Deza M-M, Deza E (2006) Dictionary of distances. Elsevier BV

    Google Scholar 

  6. Dodson MH, Compston W, Williams IS, Wilson JF (1988) A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc 145(6):977–983

    Article  Google Scholar 

  7. Fralick P (2003) Geochemistry of clastic sedimentary rocks: ratio techniques. In: Lentz D (ed) Geochemistry of sediments and sedimentary rocks. Geological Association of Canada, St. John’s, pp 85–103

    Google Scholar 

  8. Fralick P, Kronberg B (1997) Geochemical discrimination of clastic sedimentary rock sources. Sediment Geol 113(1–2):111–124

    Article  Google Scholar 

  9. Gehrels G (2011) Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley, Chichester, UK, pp 45–62

    Google Scholar 

  10. Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9(3):1–13

    Article  Google Scholar 

  11. Griffin W, Pearson N, Belousova E, Jackson S, van Achterbergh E, O’Reilly SY, Shee S (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147

    Article  Google Scholar 

  12. Haughton PDW, Todd SP, Morton AC (1991) Sedimentary provenance studies. Geol Soc Lond Spec Publ 57(1):1–11

    Article  Google Scholar 

  13. Hu Z, Liu Y, Chen L, Zhou L, Li M, Zong K, Zhu L, Gao S (2011) Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal AtIc Spectrom 26:425–430

    Article  Google Scholar 

  14. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211(1–2):47–69

    Article  Google Scholar 

  15. Li X-H, Li Z-X, Wingate MT, Chung S-L, Liu Y, Lin G-C, Li W-X (2006) Geochemistry of the 755 Ma Mundine Well dyke swarm, Northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res 146(1–2):1–15

    Article  Google Scholar 

  16. Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2009) Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J Petrol 51(1–2):537–571

    Google Scholar 

  17. Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55(15):1535–1546

    Article  Google Scholar 

  18. Ludwig K (2008) Manual for Isoplot 3.7. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  19. Machado N, Simonetti A (2001) U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-MS in the earth sciences: principles and applications, vol 29. Mineralogical Association of Canada, pp. 121–146

    Google Scholar 

  20. Morel M, Nebel O, Nebel-Jacobsen Y, Miller J, Vroon P (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255(1–2):231–235

    Article  Google Scholar 

  21. Pelto CR (1954) Mapping of multicomponent systems. J Geol 62:501–511

    Article  Google Scholar 

  22. Satkoski AM, Wilkinson BH, Hietpas J, Samson SD (2013) Likeness among detrital zircon populations—an approach to the comparison of age frequency data in time and space. Geol Soc Am Bull 125(11–12):1783–1799

    Article  Google Scholar 

  23. Shannon CE, Weaver W (1971) The mathematical theory of communication. University of Illinois Press, Illinois

    Google Scholar 

  24. Sircombe KN (2004) AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31

    Article  Google Scholar 

  25. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35

    Article  Google Scholar 

  26. Smosna R, Bruner KR, Burns A (1999) Numerical analysis of sandstone composition, provenance, and paleogeography. J Sediment Res 69(5):1063–1070

    Article  Google Scholar 

  27. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324

    Article  Google Scholar 

  28. Sylvester PJ (2008) Laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues, vol 40. Mineralogical Association of Canada

    Google Scholar 

  29. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3–4):441–451

    Article  Google Scholar 

  30. Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, von Quadt A, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Google Scholar 

  31. Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209(1–2):121–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Eizenhöfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eizenhöfer, P.R. (2020). Methodology. In: Subduction and Closure of the Palaeo-Asian Ocean along the Solonker Suture Zone: Constraints from an Integrated Sedimentary Provenance Analysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9200-0_3

Download citation

Publish with us

Policies and ethics