Advertisement

Importance of Intersystem Crossing on Flammability Properties of Carbon Disulphide (CS2)

  • Zhe Zeng
  • Bogdan Z. Dlugogorski
  • Ibukun Oluwoye
  • Mohammednoor AltarawnehEmail author
Conference paper

Abstract

Carbon disulphide (CS2) represents an important chemical commodity, unfortunately, found responsible for several factory, laboratory and transportation fires. This contribution examines the high flammability of CS2 by exploring the fire chemistry of the intersystem crossing (ISC) process that occurs within the two key elementary reactions. By expanding the potential enthalpy surfaces of CS + O2 reaction into three-dimensional space, we reveal the unusual changeover from the triplet surface onto the singlet surface through the ISC point. We calculate the minimum energy crossing point to locate the ISC structure, resulting in a lowered activation energy for the CS2 + O2 and CS + O2 reactions. This enables us to explain the low ignition temperature and high flammability of CS2, a common compound in the chemical industry.

Keywords

Flammability Potential enthalpy surface (PES) Intersystem crossing (ISC) Minimum energy crossing point (MECP) 

Notes

Acknowledgements

This study has been supported by funds from the Australian Research Council (ARC), and grants of computing time from the National Computational Infrastructure (NCI) Australia and the Pawsey Computing Centre in Perth. Zhe Zeng thanks Murdoch University for postgraduate research scholarships.

References

  1. 1.
    Bodner, G. M. (1985). Lecture demonstration accidents from which we can learn. Journal of Chemistry Education, 62, 1105.CrossRefGoogle Scholar
  2. 2.
    Sherwood, P. W. (1963). Raw materials for man-made fibers. Industrial and Engineering Chemistry, 55, 37–42.CrossRefGoogle Scholar
  3. 3.
    Zhao, F., Hawkesford, M., & McGrath, S. (1999). Sulphur assimilation and effects on yield and quality of wheat. Journal of Cereal Science, 30, 1–17.CrossRefGoogle Scholar
  4. 4.
    Chittora, S., & Dwivedi, A. K. Recent trends in safety management system in carbon disulphide plant: A research.Google Scholar
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Hanst, P. L., & Myerson, A. L. (1954). Absorption spectroscopy of explosions. Review of Scientific Instrument, 25, 469–470.CrossRefGoogle Scholar
  9. 9.
    Glarborg, P., Halaburt, B., Marshall, P., Guillory, A., Troe, J., Thellefsen, M., et al. (2014). Oxidation of reduced sulfur species: Carbon disulfide. The Journal of Physical Chemistry A, 118, 6798–6809.CrossRefGoogle Scholar
  10. 10.
    Abián, M., Cebrián, M., Millera, Á., Bilbao, R., & Alzueta, M. U. (2015). CS2 and COS conversion under different combustion conditions. Combustion and Flame, 162, 2119–2127.CrossRefGoogle Scholar
  11. 11.
    Zeng, Z., Dlugogorski, B. Z., & Altarawneh, M. (2017). Flammability of CS2 and other reduced sulfur species. Fire Safety Journal, 91, 226–234.CrossRefGoogle Scholar
  12. 12.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheesema, J. R., et al. (2009). Gaussian 09, Revision B.01, Wallingford CT.Google Scholar
  13. 13.
    Zhao, Y., & Truhlar, D. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., & Truhlar, D. G. (2008). Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 4, 1849–1868.CrossRefGoogle Scholar
  15. 15.
    Fukui, K. (1981). The path of chemical reactions-the IRC approach. Accounts of Chemical Research, 14, 363–368.CrossRefGoogle Scholar
  16. 16.
    Chachiyo, T., & Rodriguez, J. H. (2005). A direct method for locating minimum-energy crossing points (MECPs) in spin-forbidden transitions and nonadiabatic reactions. The Journal of Chemical Physics, 123, 094711.CrossRefGoogle Scholar
  17. 17.
    Chachiyo, T., et al. (2016). Siam quantum: A compact open-source quantum simulation software for molecules, Thailand.Google Scholar
  18. 18.
    Reaction Design, San Diego, CHEMKIN-PRO (2013).Google Scholar
  19. 19.
    Harvey, J. N. (2007). Understanding the kinetics of spin-forbidden chemical reactions. Physical Chemistry Chemical Physics, 9, 331–343.CrossRefGoogle Scholar
  20. 20.
    Conaire, M. Ó., Curran, H. J., Simmie, J. M., Pitz, W. J., & Westbrook, C. K. (2004). A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 36, 603–622.CrossRefGoogle Scholar
  21. 21.
    Metcalfe, W. K., Burke, S. M., Ahmed, S. S., & Curran, H. J. (2013). A hierarchical and comparative kinetic modeling study of C1 – C2 hydrocarbon and oxygenated fuels. International Journal of Chemical Kinetics, 45, 638–675.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Zhe Zeng
    • 1
  • Bogdan Z. Dlugogorski
    • 2
  • Ibukun Oluwoye
    • 1
  • Mohammednoor Altarawneh
    • 1
    Email author
  1. 1.Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education (SHEE)Murdoch UniversityMurdoch, PerthAustralia
  2. 2.Office of Deputy Vice Chancellor Research & InnovationCharles Darwin UniversityDarwinAustralia

Personalised recommendations