Advertisement

Shape and Oscillation of Ethylene and Propane Laminar Diffusion Flames in Micro- and Normal Gravities

  • Luyao Zhao
  • Dan Zhang
  • Jingwu Wang
  • Jun FangEmail author
  • Kaiyuan Li
  • Jinfu Guan
  • Jinjun Wang
  • Yongming Zhang
Conference paper

Abstract

In this study, a set of experiments were carried out in micro- and normal gravities to study the flame shape and oscillation of co-flow laminar diffusion ethylene and propane flames. The experimental results show that in microgravity, the flame length and width are larger than those under normal gravity, and the ratio of flame length to width is lower than that in normal gravity. The flame length and width decrease seriously with the increasing co-flow air velocity in microgravity, while they are almost unaffected by the co-flow air velocity in normal gravity. The flame oscillation is not experimentally noticeable in microgravity. In normal gravity, it is found that the flame oscillation frequency increases linearly with the volume flow rate of co-flow air. The flame oscillation is fully suppressed when the air co-flow velocity exceeds the critical velocity. And, the critical air co-flow velocity increases with the initial fuel flow velocity.

Keywords

Microgravity Shape Oscillation Diffusion flame 

Notes

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant No. 51576186, 51636008) and Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC029).

References

  1. 1.
    Sato, H., Amagai, K., & Arai, M. (2000). Diffusion flames and their flickering motions related with Froude numbers under various gravity levels. Combustion and Flame, 123, 107–118.CrossRefGoogle Scholar
  2. 2.
    Won, S. H., Kim, J., Shin, M. K., Chung, S. H., Fujita, O., Mori, T., et al. (2002). Normal and microgravity experiment of oscillating lifted flames in coflow. Proceedings of the Combustion Institute, 29, 37–44.CrossRefGoogle Scholar
  3. 3.
    Contreras, J., Consalvi, J.-L., & Fuentes, A. (2017). Oxygen index effect on the structure of a laminar boundary layer diffusion flame in a reduced gravity environment. Proceedings of the Combustion Institute, 36, 3237–3245.CrossRefGoogle Scholar
  4. 4.
    Nakamura, Y., Yamashita, H., & Saito, K. (2006). A numerical study on extinction behaviour of laminar micro-diffusion flames. Combustion Theory and Modelling, 10, 927–938.CrossRefGoogle Scholar
  5. 5.
    Bhowal, A. J., & Mandal, B. K. (2017). Numerical simulation of transient development of flame, temperature and velocity under reduced gravity in a methane air diffusion flame. Microgravity Science and Technology, 29, 151–175.CrossRefGoogle Scholar
  6. 6.
    Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2011). A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames. Combustion and Flame, 158, 1933–1945.CrossRefGoogle Scholar
  7. 7.
    Aalburg, C., Diez, F. J., Faeth, G. M., Sunderland, P. B., Urban, D. L., & Yuan, Z. G. (2005). Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air. Combustion and Flame, 142, 1–16.CrossRefGoogle Scholar
  8. 8.
    Durox, D., Yuan, T., & Villermaux, E. (1997). The effect of buoyancy on flickering in diffusion flames. Combustion Science and Technology, 124, 277–294.CrossRefGoogle Scholar
  9. 9.
    Sunderland, P. B., Krishnan, S. S., & Gore, J. P. (2004). Effects of oxygen enhancement and gravity on normal and inverse laminar jet diffusion flames. Combustion and Flame, 136, 254–256.CrossRefGoogle Scholar
  10. 10.
    Katta, V. R., Goss, L. P., & Roquemore, W. M. (1992). Numerical investigations on the dynamic behavior of a H2-N2 diffusion flame under the influence of gravitational force. In 30th Aerospace Sciences Meeting and Exhibit (p. 335). Reno, NV, USA.Google Scholar
  11. 11.
    Sato, H., Amagai, K., & Arai, M. (2000). Flickering frequencies of diffusion flames observed under various gravity fields. Proceedings of the Combustion Institute, 28, 1981–1987.CrossRefGoogle Scholar
  12. 12.
    Lingens, A., Neemann, K., Meyer, J., & Schreiber, M. (1996). Instability of diffusion flames. Proceedings of the Combustion Institute, 26, 1053–1061.CrossRefGoogle Scholar
  13. 13.
    Kimura, I. (1965). Stability of laminar-jet flames. Proceedings of the Combustion Institute, 10, 1295–1300.CrossRefGoogle Scholar
  14. 14.
    Darabkhani, H. G., Wang, Q., Chen, L., & Zhang, Y. (2011). Impact of co-flow air on buoyant diffusion flames flicker. Energy Conversion and Management, 52, 2996–3003.CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Fang, J., Guan, J. F., Wang, J. W., Zeng, Y., Wang, J. J., et al. (2014). Laminar jet methane/air diffusion flame shapes and radiation of low air velocity coflow in microgravity. Fuel, 130, 25–33.CrossRefGoogle Scholar
  16. 16.
    Dai, Z., Xu F., & Faeth, G. (2001). Shapes of soot-free laminar coflowing jet diffusion flames. In 39th Aerospace Sciences Meeting and Exhibit (p. 1078).Google Scholar
  17. 17.
    Kuo, K. K. (2005). Principles of combustion (2nd ed.). Hoboken, NJ, United States: Wiley.Google Scholar
  18. 18.
    Chen, M., Herrmann, M., & Peters, N. (2000). Flamelet modeling of lifted turbulent methane/air and propane/air jet diffusion flames. Proceedings of the Combustion Institute, 28, 167–174.CrossRefGoogle Scholar
  19. 19.
    Darabkhani, H. G., & Zhang, Y. (2010). Stabilisation mechanism of a flickering methane diffusion flame with co-flow of air. Engineering Letters, 18, 369.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Luyao Zhao
    • 1
  • Dan Zhang
    • 2
  • Jingwu Wang
    • 1
  • Jun Fang
    • 1
    Email author
  • Kaiyuan Li
    • 3
  • Jinfu Guan
    • 4
  • Jinjun Wang
    • 1
  • Yongming Zhang
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Building Environment EngineeringZhengzhou University of Light IndustryZhengzhouChina
  3. 3.Department of Civil and Structural EngineeringAalto UniversityEspooFinland
  4. 4.Hefei Institute for Public Safety ResearchTsinghua UniversityHefeiChina

Personalised recommendations