Skip to main content

Two-View Triangulation: A Novel Approach Using Sampson’s Distance

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1022))

  • 839 Accesses

Abstract

With the increase in the need for video-based navigation, the estimation of 3D coordinates of a point in space, using images, is one of the most challenging tasks in the field of computer vision. In this work, we propose a novel approach to formulate the triangulation problem using Sampson’s distance, and have shown that the approach theoretically converges toward an existing state-of-the-art algorithm. The theoretical formulation required for achieving optimal solution is presented along with its comparison with the existing algorithm. Based on the presented solution, it has been shown that the proposed approach converges closely to Kanatani–Sugaya–Niitsuma algorithm. The purpose of this research is to open a new frontier to view the problem in a novel way and further work on this approach may lead to some new findings to the triangulation problem.

The work was carried out during the first author’s affiliation with CSIR-Central Scientific Instruments Organisation, Chandigarh, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, vol. 2. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Matthies, L., Shafer, S.A.: Error modeling in stereo navigation. IEEE J. Robot. Autom. 3(3), 239–248 (1987)

    Article  Google Scholar 

  3. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  4. Sünderhauf, N., Protzel, P.: Stereo odometry–a review of approaches. Technical report, Chemnitz University of Technology (2007)

    Google Scholar 

  5. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers. J. Field Robot. 24(3), 169–186 (2007)

    Article  Google Scholar 

  6. Wu, J.J., Sharma, R., Huang, T.S.: Analysis of uncertainty bounds due to quantization for three-dimensional position estimation using multiple cameras. Opt. Eng. 37(1), 280–292 (1998)

    Article  Google Scholar 

  7. Fooladgar, F., Samavi, S., Soroushmehr, S., Shirani, S.: Geometrical analysis of localization error in stereo vision systems (2013)

    Google Scholar 

  8. Beardsley, P.A., Zisserman, A., Murray, D.W.: Navigation using affine structure from motion. In: Computer Vision ECCV’94, pp. 85–96. Springer, Berlin (1994)

    Google Scholar 

  9. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  10. Vite-Silva, I., Cruz-Cortés, N., Toscano-Pulido, G., de la Fraga, L.G.: Optimal triangulation in 3d computer vision using a multi-objective evolutionary algorithm. In: Applications of Evolutionary Computing, pp. 330–339, Springer, Berlin (2007)

    Google Scholar 

  11. Wong, Y.-P., Ng, B.-Y.: 3d reconstruction from multiple views using particle swarm optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  12. Kanazawa, Y., Kanatani, K.: Reliability of 3-d reconstruction by stereo vision. IEICE Trans. Inf. Syst. 78(10), 1301–1306 (1995)

    Google Scholar 

  13. Kanatani, K., Sugaya, Y., Niitsuma, H.: Triangulation from two views revisited: Hartley-sturm vs. optimal correction. In: Practice, vol. 4, p. 5 (2008)

    Google Scholar 

  14. Lindstrom, P.: Triangulation made easy. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1554–1561. IEEE (2010)

    Google Scholar 

  15. Kanatani, K., Niitsuma, H.: Optimal two-view planar scene triangulation. In: Computer Vision–ACCV 2010, pp. 242–253. Springer, Berlin (2011)

    Google Scholar 

  16. Sampson, P.D.: Fitting conic sections to very scattered data: an iterative refinement of the bookstein algorithm. Comput. Graph. Image Process. 18(1), 97–108 (1982)

    Google Scholar 

  17. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  18. Petersen, K.B., Pedersen, M.S.: The matrix cookbook. Technical University of Denmark, pp. 7–15 (2008)

    Google Scholar 

  19. Longuet-Higgins, H.: A computer algorithm for reconstructing a scene from two projections. In: Fischler M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 61–62 (1987)

    Google Scholar 

  20. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  21. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote. Sens. 60(4), 284–294 (2006)

    Article  Google Scholar 

  22. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peter Lindstrom, Lawrence Livermore National Laboratory, for sharing with us the data set on which he has tested his method in [14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Das .

Editor information

Editors and Affiliations

Appendix 1: Derivation of the Lagrangian

Appendix 1: Derivation of the Lagrangian

To start with, we consider the Lagrangian in (10)

$$ f = f_s + \lambda (\mathbf{x '}-\mathbf{S ^\top \varDelta \mathbf x '})^\top \mathbf F (\mathbf{x }-\mathbf{S ^\top \varDelta \mathbf x }) $$

where, \(f_s\) is from (9).

Computing the partial derivatives of f with respect to \({\varDelta \mathbf x }\) and \({\varDelta \mathbf x '}\) yields,

$$\begin{aligned} \begin{aligned} \dfrac{\partial f}{\partial {\varDelta \mathbf x }}=\quad -\lambda \mathbf s _2{{\hat{\mathbf{x }}'}}\ +\ \dfrac{2a(\mathbf s _2{{\hat{\mathbf{x }}'}} + \mathbf s _2\mathbf S ^\top \varDelta \mathbf x ' )b}{b^2}\ \\ -\ \dfrac{2[{(\mathbf F \mathbf{x })_1}\ \mathbf s _2(:,1) + {(\mathbf F \mathbf{x })_2}\ \mathbf s _2(:,2)]a^2}{b^2}, \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned} \begin{aligned} \dfrac{\partial f}{\partial {\varDelta \mathbf x '}} =\qquad -\lambda \mathbf s _1{{\hat{\mathbf{x }}}}\ +\ \dfrac{2a(\mathbf s _1{{\hat{\mathbf{x }}}} + \mathbf s _1\mathbf S ^\top \varDelta \mathbf x )b}{b^2}\ \\ -\ \dfrac{2[{(\mathbf F ^\top \mathbf{x '})_1}\ \mathbf s _1(:,1) + {(\mathbf F ^\top \mathbf{x '})_2}\ \mathbf s _1(:,2)]a^2}{b^2} \end{aligned} \end{aligned}$$
(19)

respectively. Here, we have considered

$$\begin{aligned} (\mathbf F \ ({{\hat{\mathbf{x }}}}+\mathbf{S ^\top \varDelta \mathbf x }))_1=(1,0,0)\ \mathbf F \ ({{\hat{\mathbf{x }}}}+\mathbf{S ^\top \varDelta \mathbf x }) \end{aligned}$$
(20)

and,

$$\begin{aligned} (\mathbf F \ ({{\hat{\mathbf{x }}}}+\mathbf{S ^\top \varDelta \mathbf x }))_2=(0,1,0)\ \mathbf F \ ({{\hat{\mathbf{x }}}}+\mathbf{S ^\top \varDelta \mathbf x }) \end{aligned}$$
(21)

Therefore, their derivatives will become

$$ \mathbf S {} \mathbf F (1,0,0)^\top = \mathbf s _1 (:,1),$$
$$\mathbf S {} \mathbf F (0,1,0)^\top =\mathbf s _1(:,2)$$

respectively. Similarly for \(\mathbf F ^\top \ ({{\hat{\mathbf{x }}'}}+\mathbf{S ^\top \varDelta \mathbf x '})_1\) and \(\mathbf F ^\top \ ({{\hat{\mathbf{x }}'}}+\mathbf{S ^\top \varDelta \mathbf x '})_2\). This will lead to (18) and (19).

Now, equating \(\dfrac{\partial f}{\partial {\varDelta \mathbf x }} \) and \(\dfrac{\partial f}{\partial {\varDelta \mathbf x '}}\) to zero, we get (11) and (12). From here, the solution given in (16) and (17) can be obtained, by keeping the value of \(\lambda \), as in (13).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, G., Poddar, S., Kumar, V., Das, A. (2020). Two-View Triangulation: A Novel Approach Using Sampson’s Distance. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-32-9088-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9088-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9087-7

  • Online ISBN: 978-981-32-9088-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics