Skip to main content

CARTOONNET: Caricature Recognition of Public Figures

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1022))

Abstract

Recognizing faces in the cartoon domain is a challenging problem since the facial features of cartoon caricatures of the same class vary a lot from each other. The aim of this project is to develop a system for recognizing cartoon caricatures of public figures. The proposed approach is based on the Deep Convolutional Neural Networks (DCNN) for extracting representations. The model is trained on both real and cartoon domain representations of a given public figure, in order to compensate the variations in the same class. The IIIT-CFW (Mishra et al., European conference on computer vision, 2016) [1] dataset, which includes caricatures of public figures, is used for the experiments. It is seen from these experiments that improving the performance of the model can be achieved when it is trained on representations from both real and cartoon images of the given public figure. For a total of 86 different classes, an overall accuracy of 79.65% is achieved with this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra, A., Rai, S.N., Mishra, A., Jawahar, C.V.: IIIT-CFW: a benchmark database of cartoon faces in the wild. In: European Conference on Computer Vision, pp. 35–47. Springer (2016)

    Google Scholar 

  2. Glasberg, R., Samour, A., Elazouzi, K., Sikora, T.: Cartoon-recognition using video & audio descriptors. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)

    Google Scholar 

  3. Takayama, K., Johan, H., Nishita, T.: Face detection and face recognition of cartoon characters using feature extraction. In: Image, Electronics and Visual Computing Workshop, p. 48 (2012)

    Google Scholar 

  4. Humphrey, E.: Cartoon Recognition and Classification. University of Miami (2009)

    Google Scholar 

  5. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation (2016). arXiv:1611.02200

  6. Liu, Y., Qin, Z., Luo, Z., Wang, H.: Auto-painter: cartoon image generation from sketch by using conditional generative adversarial networks (2017). arXiv:1705.01908

  7. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arXiv:1411.1784

  8. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks (2013). arXiv:1312.6229

  9. Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22(10), 3766–3778 (2013)

    Article  MathSciNet  Google Scholar 

  10. Shukla, P., Dua, I., Raman, B., Mittal, A: A computer vision framework for detecting and preventing human-elephant collisions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2883–2890 (2017)

    Google Scholar 

  11. Shukla, P., Gupta, T., Saini, A., Singh, P., Balasubramanian, R.: A deep learning frame-work for recognizing developmental disorders. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 705–714. IEEE (2017)

    Google Scholar 

  12. Shukla, P., Sadana, H., Bansal, A., Verma, D., Elmadjian, C., Raman, B., Turk, M.: Automatic cricket highlight generation using event-driven and excitement-based features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1800–1808 (2018)

    Google Scholar 

  13. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: BMVC, vol. 1, p. 6 (2015)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  15. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushkar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shukla, P., Gupta, T., Singh, P., Raman, B. (2020). CARTOONNET: Caricature Recognition of Public Figures. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-32-9088-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9088-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9087-7

  • Online ISBN: 978-981-32-9088-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics