Skip to main content

Microbe-Mediated Biotic and Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Fluctuating global climate has increasing influence on the occurrence of biotic and abiotic stresses in agriculture resulting in reduced productivity. The scenario has been estimated to be intensified owing to the increased drought, soil and water salinity, and shortage of water resources. Biotic stress was also encountered in terms of outbreaks of various pathogens. Diseases caused by pathogens are the foremost factor affecting agricultural produce. Copious mechanisms are implemented by plant to tolerate the stressor(s). Key strategies were designed for developing biotic and abiotic stress-tolerant crop varieties, cultivation techniques, and microbial inoculant and products to enhance the tolerance of plants toward biotic and abiotic stresses. In this literature, we focus on the response of plants toward biotic-abiotic stress, plant-beneficial microbes, and microbe-mediated tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Khan MS (2010) Phosphate-solubilizing and plant growth- promoting Pseudomonas aeruginosa PS1 improves green gram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011) Pseudomonas aeruginosa strain PS1 enhances growth parameters of green gram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84:123–131

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M et al (2009) Pseudomonas sp.strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Amusa NA (2006) Microbially produced phytotoxins and plant disease management. Afr J Biotechnol 5:405–414

    CAS  Google Scholar 

  • Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113. https://doi.org/10.1016/j.tplants.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  • Anith KN, Tilak KVBR, Khanuja SPS et al (1999) Molecular basis of antifungal toxin production by fluorescent Pseudomonas sp. strain EM85 a biological control agent. Curr Sci 77:671–677

    CAS  Google Scholar 

  • Antoniw JF, Dunkley AM, White RF et al (1980) Soluble leaf proteins of virus-infected tobacco (Nicotiana tabacum) cultivars [proceedings]. Biochem Soc Trans 8:70–71

    Article  CAS  PubMed  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K et al (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO et al (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Baker EF, Cook RJ (1975) Biological control of plant pathogens. Exp Agric 11:433

    Article  Google Scholar 

  • Bano A, Fatima M et al (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barka EA, Nowak J, Clement C et al (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. American J Potato Res 75:145–152. https://doi.org/10.1007/bf02895849

    Article  Google Scholar 

  • Bitla UM, Sorty AM, Meena KK, Singh NP (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, vol I. Springer Nature, Singapore, pp 211–226

    Chapter  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ et al (1992) Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant-cell wall protein—a novel, rapid defense response. Cell 70:21–30

    Article  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A et al (2013) Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D et al (2011) The roles of ABA in plant–pathogen inter-actions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ et al (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Google Scholar 

  • Chen M, Wei H, Cao J et al (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabdopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R et al (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botanique 87:455–462

    Article  CAS  Google Scholar 

  • Cook RJ (2000) Advances in plant health management in the 20th century. Annu Rev Phytopathol 38:95–116

    Article  CAS  PubMed  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Bio 46:521–529

    Article  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA et al (2004) Water relations and yield inAzospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM et al (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Dahal D, Heintz D, Van Dorsselaer A et al (2009) Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum. Plant Physiol Biochem 47:838–846

    Article  CAS  PubMed  Google Scholar 

  • Denance N, Ranocha P, Oria N et al (2012) Arabidopsis wat1 (walls are thin1)- mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J 73:225–239

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F et al (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculants for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:561–573

    Article  Google Scholar 

  • Eggert D, Naumann M, Reimer R et al (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elad Y, Baker R (1985) Role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium sp. by Pseudomonas spp. Ecol Epidemiol 75:1053–1059

    CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700. https://doi.org/10.1111/j.1364-3703.2007.00419.x

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR et al (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T (2005) Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instr. https://doi.org/10.1094/PHI-I-2008-0226-01

  • Fry SC, Aldington S, Hetherington PR et al (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 103:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu R, Zhang M, Zhao Y (2017) Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front Plant Sci 8:864

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangappa SN, Berriri S, Kumar SV (2017) PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr Biol 27:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Burdman S, Okon Y et al (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264

    Article  Google Scholar 

  • Gill SS, Gill R, Trivedi DK (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Applied Microbiol 56:291–312

    Article  CAS  Google Scholar 

  • Hariprasad P, Umesha S (2007) Induction of systemic resistance in field grown tomato by PGPR against Xanthomonas vesicatoria incitant of bacterial spot. J Mycol Plant Pathol 37:460–463

    Google Scholar 

  • Hegedus D, Yu M, Baldwin D et al (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397

    Article  CAS  PubMed  Google Scholar 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39:515–530

    Article  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M et al (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jiang QY, Zhuo F, Long SH et al (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805. https://doi.org/10.1038/srep21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL et al (2014b) Gibberellin secreting rhizobacterium Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kannojia P, Sharma PK, Abhijeet K et al (2017) Microbe-mediated biotic stress management in plants. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 627–648

    Google Scholar 

  • Kiraly L, Barnaz B, Kiralyz Z et al (2007) Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. J Phytopathol 155:385–396. https://doi.org/10.1111/j.1439-0434.2007.01264.x

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L et al (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Article  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F et al (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F et al (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kudela V (2009) Potential impact of climate change on geographic distribution of plant pathogenic bacteria in central Europe. Plant Prot Sci 45:S27–S32

    Article  Google Scholar 

  • Kumar M, Choi J, An G (2017) Ectopic expression of OSSTA2 enhances salt stress tolerance in rice. Front Plant Sci 8:316

    PubMed  PubMed Central  Google Scholar 

  • Ladanyi M, Horvath L (2010) A review of the potential climate change impact on insect populations–general and agricultural aspects. Appl Ecol Environ Res 8:143–152. https://doi.org/10.15666/aeer/0802_143151

    Article  Google Scholar 

  • Lamb C, Dixon RA et al (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol 48:251–275

    Article  CAS  Google Scholar 

  • Li B, Gao K, Ren H (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60:757–779

    Article  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Lopes MS, Araus JL, van Heerden PDR et al (2011) Foyer CH. Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Chin-A-Woeng T, Bloemberg G et al (2002) Microbe plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Pastor V, Robert J et al (2011) Callose deposition: a multifaceted plant defense response. Mol. Plant Microbe Interact 24:183–193

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R et al (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environment. Mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR et al (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR et al (2004b) Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG et al (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyahar M, Takenaka C, Tomioka R et al (2011) Root response of Siberian larch to different soil water conditions. Hydrol Res Lett 5:93–97

    Article  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M et al (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 2:1001–1009

    Article  CAS  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Crasta OR, Tuori RP et al (2002) Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringaepv. tomato. Plant J 32:299–315

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS et al (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • O’Brien JA, Daudi A, Finch P (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158:2013–2027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omar AM, Ahmed AIS (2014) Antagonistic and inhibitory effect of some plant Rhizo-bacteria against different Fusarium isolates on Salvia officinalis. American-Eurasian J Agric Environ Sci 14:1437–1446

    Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Sakuma Y, Li J et al (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052. https://doi.org/10.1093/pcp/pch118

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 11:83–91

    Google Scholar 

  • Ramamurthy V, Viswanathan R, Rhaguchander T et al (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in 204 A.T. Jan et al. crop plants against pests and diseases. Crop Prot 20:1–11

    Article  Google Scholar 

  • Rani A, Bhat MN, Singh BP et al (2007) Effect of phylloplane fungi on potato late blight pathogen Phytophthora infestans. J Mycol Plant Pathol 37:413–417

    Google Scholar 

  • Ranocha P, Denancé N, Vanholme R et al (2010) Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J 63:469–483

    Article  CAS  PubMed  Google Scholar 

  • Sadik S, Mazouz H, Bouaichi A et al (2013) Biological control of bacterial onion diseases using a bacterium, Pantoea Agglomerans 2066-7. Int J Sci Res 4:2319–7064

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M et al (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes anti oxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30. https://doi.org/10.1007/s10725-010-9479-4

    Article  CAS  Google Scholar 

  • Sang-Mo K, Radhakrishnan R, Khan AL et al (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T et al (2010) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209. https://doi.org/10.1007/s11738-010-0539-1

    Article  CAS  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shrestha BK, Karki HS, Groth DE et al (2016) Biological control activities of rice-associated bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One 11:e0146764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh UB, Sahu A, Singh RK et al (2012) Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminocola and Rhizoctonia solani in Rice (Oryza Sativa L). Biol Control 60:262–270

    Article  Google Scholar 

  • Sinha S, Singh D, Yadav DK et al (2012) Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopathol 65:18–24

    Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K et al (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Bitla UM, Meena KK, Singh NP (2018) Role of microorganisms in alleviating abiotic stresses. In: Panpatte DG et al (eds) Microorganisms for green revolution. Springer Nature, Singapore, pp 115–128

    Chapter  Google Scholar 

  • Srivastava S, Chaudhry V, Mishra A et al (2012) Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signal Behav 7:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R et al (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907

    Article  CAS  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice J 5:1–9. https://doi.org/10.1186/1939-8433-5-6

    Article  Google Scholar 

  • Tuzun S (2001) Relationship between pathogen induced systemic resistance and multigenic resistance in plants. Eur J Plant Pathol 107:85–93

    Article  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT et al (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Vidhyasekaran P (2002) Bacterial disease resistance in plants. Molecular biology and biotechnological applications. The Haworth Press, Binghamton

    Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A et al (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against anthracnose pathogen in Mango. World J Microbiol Biotechnol 20:235–244

    Article  CAS  Google Scholar 

  • Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C et al (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang Z, Yano M, Yamanouchi U et al (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  CAS  PubMed  Google Scholar 

  • Xie R, Zhang J, Ma Y et al (2017) Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 7:42094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yandigiri MS, Meena KK, Singh D, Malviya N et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y et al (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A 95:1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Duan L, Zhai Z et al (2004) Effects of plant growth regulators on water deficit-induced yield loss in soybean. In: Proceedings of the 4th International crop science congress, Brisbane, QLD

    Google Scholar 

  • Zhao Q, Dixon RA (2014) Altering the cell wall and its impact on plant disease: from forage to bioenergy. Annu Rev Phytopathol 52:69–91. https://doi.org/10.1146/annurev-phyto-082712-02237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Indian Council of Agricultural Research (ICAR) for financial support through Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh K. Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, K.K., Shinde, A.L., Sorty, A.M., Bitla, U.M., Meena, H., Singh, N.P. (2019). Microbe-Mediated Biotic and Abiotic Stress Tolerance in Crop Plants. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_15

Download citation

Publish with us

Policies and ethics