Skip to main content

Seed Biopriming with Potential Microbial Inoculants as Sustainable Options for Stress Management in Crops

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Biopriming of seeds represents standard approach for introduction of disease resistance via biocontrol agents. Priming of seeds with beneficial microorganisms and biocontrol agents has been reported more efficiently for the management of diseases and pests as compared to other available methodologies. The technique is also reported to stimulate cellular, molecular, and biochemical defense responses in plants toward resistance induction against abiotic stresses. Plants essentially live with microbial communities that colonize aerial parts as well as roots both externally (epiphytic) and internally (endophytic). By providing nutritional and defense-related support influencing distinct genetic cascades, biochemical pathways, and metabolite accumulation or excretion, microbes can fundamentally alter plant phenotypes and enable plants to tolerate stress conditions and at the same time enhance crop productivity. We discussed various techniques of seed biopriming as viable options for health management in crop plants and also presented case examples from rice fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Kader MM, El-Mougy NS, Embaby EI (2012) Evaluating the efficacy of different plant resistance inducers and/or bio-agents treatments against root diseases incidence of some vegetables under protected cultivation system. Aust J Basic Appl Sci 6(5):241–248

    CAS  Google Scholar 

  • Abdel-Rehim MA, Abou-Taleb EM, Al-Mounofe OA, Raffat FM, Tohamy A (1987) The efficacy of seed treatment with calcium compounds in controlling damping-off disease of certain vegetable crops. Alexandria J Agric Res 32:333–344

    Google Scholar 

  • Abuamsha R, Salman M, Ehlers R (July 2011a) Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. Eur J Plant Pathol 130(3):287–295

    Article  Google Scholar 

  • Abuamsha R, Salman M, Ehlers R (2011b) Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis. Biocontrol Sci Technol 21(2):199–213

    Article  Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9(2):e90402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aly MDH, El-Mougy NS, Abdel-Kader MM (2010) Applicable approach for controlling soilborne root pathogenic Fungi. J Plant Pathol Microbiol 1:102. https://doi.org/10.4172/2157-7471.1000102

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mold of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bennett AJ, Whipps JM (2008) Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming. Biol Control 44:349–361

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. Wld J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bio-Treated Seeds, Dr. Krishan Chandra and S. R. Ingle. http://ncof.dacnet.nic.in/Training_manuals/Training_manuals_in_English/BIOSEEDS.pdf

    Google Scholar 

  • Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2011) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158(1):139–146

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Turkevitch E, Okon Y, 2000. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subbarao and Y. R. Dommergues (eds) Microbial interaction in agriculture and forestry. Science Publishers Inc., USA 2, pp 229–249

    Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. HortScience 26:1163–1165

    Article  Google Scholar 

  • Celar F (2000) Cucurbit diseases. Sodobno Kmetijstvo 33:162–165

    Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283

    Article  CAS  Google Scholar 

  • Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defence enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Correa OS, Montecchia MS, Berti MF, Ferrari MCF, Pucheu NL, Kerber NL et al (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194

    Article  Google Scholar 

  • Dalling JW, Davis AS, Schutte BJ, Arnold AE (2011) Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J Ecol 99(1):89–95

    Article  Google Scholar 

  • Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25(2). https://doi.org/10.1002/gbc.v25.2/issuetoc

  • Desai S, Reddy MS, Kloepper JW (2002) Comprehensive testing of biological control agents. In: Gnanamanickam S (ed) Biological control of crop diseases. Marcel Dekker, Inc, New York, pp 387–420

    Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (gram) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadeh M, Farhang M (2013) Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int J Agronomy Plant Prod 4(4):610–619

    Google Scholar 

  • Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier M, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Pérez-Alfocea F (2011) Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep 30(5):807–823

    Article  CAS  PubMed  Google Scholar 

  • Gnanamanickam S, Vasudevan P, Reddy MS, Defago G, Kloepper JW (2002) Principles of biological control. In: Gnanamanickam S (ed) Biological control of crop diseases. Marcel Dekker, Inc, New York, pp 1–9

    Chapter  Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberelins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Vietnam. J Int Soc Southeast Asian Agric Sci 16:17–21

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 10:1–13

    Google Scholar 

  • Hamza AM, El-Kot GA, El-Moghazy S (2013) Non-traditional methods for controlling maize late wilt disease caused by Cephalosporium maydis. Egypt J Biol Pest Control 23(1):87–93

    Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438. https://doi.org/10.1371/journal.pone.0030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520–525

    Article  Google Scholar 

  • Hibar K, Daami-Remadi M, Hamada W, El-Mahjoub M (2006) Bio-fungicides as an alternative for tomato Fusarium crown and root rot control. Tunis J Plant Prot 1:19–29

    Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant–Microb Interact 20:619–626

    Article  CAS  Google Scholar 

  • Jabbarpour S, Ghassemi-Golezani K, Aghazadeh R (2014) Effects of salt priming on seedling vigor and field establishment of aged winter wheat seeds. In J Biosci 5(3):67–72

    Google Scholar 

  • Jalilian J, Modarres-Sanavy SAM, Saberali SF, Sadat-Asilan K (2012) Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crops Res 127(27):26–34

    Article  Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen M (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560

    Article  PubMed  Google Scholar 

  • Kim HS, Sang MK, Jeun Y-C, Hwang BK, Kim KD (2008) Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 27:436–443

    Article  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) In: Maheshwari DK (ed) Bacillus as PGPR in crop ecosystem, in Bacteria in Agrobiology: Crop Ecosystems, 1st edn. Springer, New York, pp 37–59

    Chapter  Google Scholar 

  • Kumar PMP, Arpitha V, Sharma DD, Rekha M, Tippeswamy T, Bindroo BB (2013) Effect of bacterial biopriming on seed germination and seedling growth of mulberry and their antagonism to Rhizoctonia bataticola. Indian J Seric 52(2):96–103

    Google Scholar 

  • Leeman M, Van Pelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber by plant growth promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064–1068

    Article  Google Scholar 

  • Lopes MS, Foyer CH (2011) The impact of high CO2 on plant abiotic stress tolerance. In: Araus JL, Slafer GA (ed) Crop stress management and global climate change, Vol. 2. CABI Climate Change Series, pp 85–104

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mat 195(15):230–237

    Article  CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43(3):609–619

    Article  CAS  Google Scholar 

  • Mancini V, Romanazzi G (2014) Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag Sci 70:860–868. https://doi.org/10.1002/ps.3693

    Article  CAS  PubMed  Google Scholar 

  • Mariutto M, Fauconnier M, Ongena M, Laloux M, Wathelet J, du Jardin P, Thonart P, Dommes J (2014) Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria induced systemic resistance in tomato. Plant Mol Biol 84(4–5):455–467

    Article  CAS  PubMed  Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, Tajabadi FH (2010) Biopriming of Sunflower (‘Helianthus annuus’ L.) Seed with ‘Pseudomonas fluorescens’ for improvement of seed invigoration and seedling growth. Australian J Crop Sci 4(7):564–570

    Google Scholar 

  • Mokhtar MM, El-Mougy NS (2014) Bio-compost application for controlling soilborne plant pathogens –a review. Int J Eng Innov Technol(IJEIT) 4(1)

    Google Scholar 

  • Mondal S, Bose B (2014) An impact of seed priming on disease resistance: a review. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 193–203

    Google Scholar 

  • Nayaka SC, Niranjana SR, Uday Shankar AC, Niranjan Raj S, Reddy MS, Prakash HS, Mortensen CN (2010) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Protect 43(3):264–282

    Article  Google Scholar 

  • Negi DS, Sharma PK, Gupta RK (2014) Management of root-rot complex disease and assessment of plant growth promoting characters in vegetable pea with native and commercial antagonistics through seed biopriming. Int J Recent Sci Res 5(8):1416–1421

    Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online CropManage 3. https://doi.org/10.1094/CM-2004-0301-05-RV

    Article  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530

    Article  CAS  Google Scholar 

  • Pill WG, Collins CM, Goldberger B, Gregory N (2009) Responses of non-primed or primed seeds of ‘Marketmore 76’ cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum. Sci Hortic 121(1):54–62

    Article  Google Scholar 

  • Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (January–February 2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47(1):44–54

    Article  CAS  Google Scholar 

  • Podile AR and Kishore GK, Plant growth-promoting rhizobacteria, In Plant-associated bacteria, ed. by Gnanamanickam SS. Springer, Dordrecht, pp. 195–230 (2006)

    Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raghuchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur J Plant Pathol 108:429–441

    Article  CAS  Google Scholar 

  • Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4:8461–8465

    Article  CAS  Google Scholar 

  • Rao MSL, Kulkarni S, Lingaraju S, Nadaf HL (2009) Bio-priming of seeds: a potential tool in the integrated management of alternaria blight of sunflower. HELIA 32(50):107–114

    Article  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    Article  Google Scholar 

  • Reddy PP (2013) Bio-priming of Seeds, Recent advances in crop protection, pp 83–90

    Chapter  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yima WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011 Nov) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100(4):557–568. https://doi.org/10.1007/s10482-011-9611-0

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner S, Roswitha Mammerler R, Vierheilig H (2008) Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol 122:395–401

    Article  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena K, Yandigeri M, Singh DP, Arora D (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systematic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36(1):453–483

    Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99(4):450–456

    CAS  Google Scholar 

  • Verhagen BMW, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61(1):249–260. https://doi.org/10.1093/jxb/erp295

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease in sugarcane. Sugar Technol 1:67–76

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. JExp Bot 52:487–512

    CAS  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259

    Google Scholar 

Download references

Acknowledgments

RP is thankful to DST for financial support under DST-Women Scientist Scheme-B (KIRAN Program) (Grant No. DST/WOS-B/2017/67-AAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjaya Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabha, R., Singh, D.P., Yadav, S.K. (2019). Seed Biopriming with Potential Microbial Inoculants as Sustainable Options for Stress Management in Crops. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_10

Download citation

Publish with us

Policies and ethics