Skip to main content

FE-Based Heat Transfer Analysis of Laser Additive Manufacturing on Ti–6Al–4V Alloy

  • Conference paper
  • First Online:
Book cover Advances in Computational Methods in Manufacturing

Abstract

A thorough understanding of laser-based additive manufacturing process and effect of various process variables such as scanning velocity and laser beam power on melt-pool dimensions and temperature variation is a promising task in design and manufacture of an able product. The present work is focused on comprehending the thermal and melt-pool behavior of a high layer thickness five-layer laser additive manufacturing of Ti–6Al–4V alloy quantitatively. A three-dimensional (3D) nonlinear transient thermal model is developed based on a finite element procedure to simulate single- and multi-layer of Ti–6Al–4V alloy and to estimate melt-pool dimensions and thermal cycles. In this work, temperature-dependent material properties and Gaussian distributed ‘disk’ heat source model are implemented along with actual process boundary and initial conditions. Also, the influence of laser beam power and laser scanning velocity was examined with respect to melt-pool characteristics and thermal cycles. The laser scanning velocity ranges from 200 to 500 mm s−1 and laser beam power from 100 to 400 W are examined. It is observed that the temperature rises for successive layers as the laser power supply continues on consecutive layers. Also, it is obvious that with the rise in temperature, melt-pool dimensions also increase. Furthermore, the melt-pool dimensions increase as the number of deposited layers increases. Time–temperature history and melt-pool evolution in different layers with respect to laser beam power and laser scanning velocity are presented. To verify the effectiveness of the developed model, simulated results are compared with experimentally measured melt-pool profiles and dimensions. A fair agreement between experimental results and computed values is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Organization for Standardization: Standard terminology for additive manufacturing—general principles—part 1: terminology, 2015, (52900:2015 (E))

    Google Scholar 

  2. Bandyopadhyay, A., Espana, F., Balla, V.K., Bose, S., Ohgami, Y., Davies, N.M.: Influence of porosity on mechanical properties and in vivo response of Ti–6Al–4V implants. Acta Biomater. 6, 1640–1648 (2010)

    Article  CAS  Google Scholar 

  3. Vrancken, B., Thijs, L., Kruth, J.P., Humbeeck, J.V.: Heat treatment of Ti–6Al–4V produced by selective laser melting: Microstructure and mechanical properties. J. Alloy. Compd. 541, 177–185 (2012)

    Article  CAS  Google Scholar 

  4. Sun, J., Yang, Y., Wang, D.: Parametric optimization of selective laser melting for forming Ti–6Al–4V samples by Taguchi method. Opt. Laser Technol. 49, 118–124 (2013)

    Article  CAS  Google Scholar 

  5. Yadroitsev, I., Krakhmalev, P., Yadroitsava, I.: Selective laser melting of Ti–6Al–4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J. Alloy. Compd. 583, 404–409 (2014)

    Article  CAS  Google Scholar 

  6. Bermingham, M.J., McDonald, S.D., Dargusch, M.S.: Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti–6Al–4V produced by additive manufacturing. Mater. Sci. Eng., A 719, 1–11 (2018)

    Article  CAS  Google Scholar 

  7. Bartolomeu, F., Faria, S., Carvalho, O., Pinto, E., Alves, N., Silva, F.S., Miranda, G.: Predictive models for physical and mechanical properties of Ti6Al4 V produced by selective laser melting. Mater. Sci. Eng., A 663, 181–192 (2016)

    Article  CAS  Google Scholar 

  8. Jingjing, Y., Jie, H., Hanchen, Y., Jie, Y., Ming, G., Zemin, W., Xiaoyan, Z.: Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Mater. Des. 110, 558–570 (2016)

    Article  Google Scholar 

  9. Chandrakanth K.: The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti–6Al–4V alloy for selective laser melting. Wright State University, MSME Thesis, 1510 (2016)

    Google Scholar 

  10. Qingcheng, Y., Zhang, P., Cheng, L., Zheng, M., Chyu, M., Albert, C.T.: Finite element modelling and validation of thermo-mechanical behaviour of Ti–6Al–4V in directed energy deposition additive manufacturing. Addit. Manuf. 12, 169–177 (2016)

    Article  Google Scholar 

  11. Xufei, L., Xin, L., Chiumenti, M., Miguel, C., Li, J., Liang, M., Wei, L., Yunlong, H., Weidong, H.: Finite element analysis and experimental validation of the thermomechanical behaviour in laser solid forming of Ti–6Al–4V. Addit. Manuf. 21, 30–40 (2018)

    Article  Google Scholar 

  12. Ali, F., Mohsen, B., Ehsan, F., Golabi, S.: Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater. Des. 89, 255–263 (2016)

    Article  Google Scholar 

  13. Kurian, A., Arivazhagan, N., Senthilkumaran, K.: Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J. Manuf. Process. 16(3), 345–355 (2014)

    Article  Google Scholar 

  14. Jun, C., Michael, A.G., Philip, N.: Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti–6Al–4V build plates. J. Mater. Process. Technol. 237, 409–419 (2016)

    Article  Google Scholar 

  15. Patcharapit, P., Recep, O., Shi-Chune, Y.: Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti–6Al–4V products. J. Mater. Process. Technol. 240, 262–273 (2017)

    Article  Google Scholar 

  16. Jihong, Y., Shoujin, S., Milan, B., Wenyi, Y.: Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti–6Al–4V alloy. J. Mater. Process. Technol. 210(15), 2215–2222 (2010)

    Article  Google Scholar 

  17. Peyre, P., Aubry, P., Fabbro, R., Neveu, R., Longuet, A.: Analytical and numerical modelling of the direct metal deposition laser process. J. Phys. D Appl. Phys. 41(2), 025403 (2008)

    Article  Google Scholar 

  18. Gockel, J., Beuth, J., Taminger, K.: Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti–6Al–4V. Addit. Manuf. 1–4, 119–126 (2014)

    Article  Google Scholar 

  19. Fachinotti, V.D., Cardona, A., Baufeld, B., Van der Biest, O.: Finite-element modelling of heat transfer in shaped metal deposition and experimental validation. Acta Mater. 60(19), 6621–6630 (2012)

    Article  CAS  Google Scholar 

  20. Romano, J., Ladani, L., Razmi, J., Sadowski, M.: Temperature distribution and melt geometry in laser and electron-beam melting processes: A comparison among common materials. Addit. Manuf. 8, 1–11 (2015)

    Article  CAS  Google Scholar 

  21. Labudovic, M., Hu, D., Kovacevic, R.: A three dimensional model for direct laser metal powder deposition and rapid prototyping. J. Mater. Sci. 38(1), 35–49 (2003)

    Article  CAS  Google Scholar 

  22. Wang, L., Felicelli, S., Gooroochurn, Y., Wang, P.T., Horstemeyer, M.F.: Optimization of the LENS® process for steady molten pool size. Mater. Sci. Eng., A 474(1), 148–156 (2008)

    Google Scholar 

  23. Beauchamp, M.J., Nordin, G.P., Woolley, A.T.: Moving from mill fluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal. Bioanal. Chem. 409, 4311–4319 (2017)

    Article  CAS  Google Scholar 

  24. Monaghan, T., Harding, M.J., Harris, R.A., Friel, R.J., Christie, S.D.: Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab Chip 16, 3362–3373 (2016)

    Article  CAS  Google Scholar 

  25. Sweet, E.C., Rudra, R., Mehta, R.L., Lin, L.: Finger-powered 3D printed microfluidic pumps. In: 19th International Solid-State Sensors, Actuators and Microsystems Conference Transducers, pp. 1766–1769, IEEE, Taiwan (2017)

    Google Scholar 

  26. Bose, S., Robertson, S.F., Bandyopadhyay, A.: Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 66, 6–22 (2018)

    Article  CAS  Google Scholar 

  27. Bandyopadhyay, A., Bose, S.: Additive Manufacturing. CRC Press, US (2015)

    Book  Google Scholar 

  28. Bose, S., Ke, D., Sahasrabudhe, H., Bandyopadhyay, A.: Additive manufacturing of biomaterials. Prog. Mater Sci. 93, 45–111 (2018)

    Article  Google Scholar 

  29. Puleo, D.A., Nanci, A.: Understanding and controlling the bone–implant interface. Biomaterials 20(23), 2311–2321 (1999)

    Article  CAS  Google Scholar 

  30. Yadaiah, N., Bag, S.: Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. Int. J. Therm. Sci. 86, 125–138 (2014)

    Article  CAS  Google Scholar 

  31. Boyer, R., Collings, E.W., Welsch, G.: Materials Properties Handbook: Titanium Alloys. ASM International, US (1994)

    Google Scholar 

Download references

Acknowledgements

The authors thank the TEQIP II grant for financially supporting this work at North Eastern Regional Institute of Science & Technology, Itanagar, Arunachal Pradesh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadaiah Nirsanametla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S.N., Chowdhury, S., Khan, M.S.M., Muralidhar, M., Nirsanametla, Y. (2019). FE-Based Heat Transfer Analysis of Laser Additive Manufacturing on Ti–6Al–4V Alloy. In: Narayanan, R., Joshi, S., Dixit, U. (eds) Advances in Computational Methods in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9072-3_33

Download citation

Publish with us

Policies and ethics