Skip to main content

Analysis of Hot Workability of Inconel Alloys Using Processing Maps

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

Understanding deformation behavior and workability is key prerequisite to optimize process parameters to improve the material processing conditions and confirming safe performance during forming. The deformation characteristics of Inconel 718 and 625 alloys have been investigated using hot tensile tests at temperature range (room temperature to 973 K) at interval of 100 K and at quasi-static strain rate of 0.0001, 0.001, and 0.01 s−1. The experimental findings confirmed that tensile flow stresses are considerably subtle to strain deformation temperature and strain rate. From tensile flow stress behavior, processing maps have been developed using dynamic material model approach at different value of strains. It was observed that the temperature range (T < 550 K) for Inconel 718 and 600–900 K for Inconel 625 for lower strain rate (0.0001 s−1) efficiency were maximum at different considered strain values. The optimum working parameters for both the alloys have been identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Special Metals: INCONEL alloy 718. (2007). SMC-066

    Google Scholar 

  2. Reed, R.C.: The Superalloys fundamentals and applications. The Superalloys: Fundamentals and Applications. Cambridge University Press (2006). https://doi.org/10.1017/cbo9780511541285

  3. Schafrik, R.E., Ward, D.D., Groh, J.R.: Application of alloy 718 in GE aircraft engines: past, present and next five years. In: Superalloys 718, 625, 706 and Various Derivatives (2001). https://doi.org/10.7449/2001/superalloys_2001_1_11

  4. Lin, Y.C., Deng, J., Jiang, Y.Q., Wen, D.X., Liu, G.: Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Sci. Eng. A 598, 251–262 (2014). https://doi.org/10.1016/j.msea.2014.01.029

  5. Zhang, P., Hu, C., Ding, C.G., Zhu, Q., Qin, H.Y.: Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 65, 575–584 (2015). https://doi.org/10.1016/j.matdes.2014.09.062

  6. Rahman, M., Seah, W.K.H., Teo, T.T.: The machinability of Inconel 718. J. Mater. Process. Technol. 63, 199–204 (1997). https://doi.org/10.1016/S0924-0136(96)02624-6

    Article  Google Scholar 

  7. Lin, Y.C., Chen, X.M.: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32, 1733–1759 (2011). https://doi.org/10.1016/j.matdes.2010.11.048

    Article  CAS  Google Scholar 

  8. Liang, R., Khan, A.S.: A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 15, 963–980 (1999). https://doi.org/10.1016/S0749-6419(99)00021-2

    Article  CAS  Google Scholar 

  9. Tan, Y.B., Ma, Y.H., Zhao, F.: Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy. J. Alloys Compd. 741, 85–96 (2018). https://doi.org/10.1016/j.jallcom.2017.12.265

    Article  CAS  Google Scholar 

  10. Cai, D., Xiong, L., Liu, W., Sun, G., Yao, M.: Development of processing maps for a Ni-based superalloy. Mater. Charact. 58, 941–946 (2007). https://doi.org/10.1016/j.matchar.2006.09.004

    Article  CAS  Google Scholar 

  11. Zhang, P., Hu, C., Ding, C., Zhu, Q., Qin, H.: Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 65, 575–584 (2015). https://doi.org/10.1016/j.matdes.2014.09.062

    Article  CAS  Google Scholar 

  12. Zhang, H., Zhang, K., Lu, Z., Zhao, C., Yang, X.: Hot deformation behavior and processing map of a γ-hardened nickel-based superalloy. Mater. Sci. Eng. A 604, 1–8 (2014). https://doi.org/10.1016/j.msea.2014.03.015

    Article  CAS  Google Scholar 

  13. Wen, D.X., et al.: Effects of initial aging time on processing map and microstructures of a nickel-based superalloy. Mater. Sci. Eng. A 620, 319–332 (2014). https://doi.org/10.1016/j.msea.2014.10.031

    Article  CAS  Google Scholar 

  14. Sui, F.L., Xu, L.X., Chen, L.Q., Liu, X.H.: Processing map for hot working of Inconel 718 alloy. J. Mater. Process. Technol. 211, 433–440 (2011). https://doi.org/0.1016/j.jmatprotec.2010.10.015

    Article  CAS  Google Scholar 

  15. Dieter, G.E., Kuhn, H.A., Semiatin, S.L.: Handbook of Workability and Process Design (2003)

    Google Scholar 

  16. Iturbe, A., et al.: Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment. Mater. Sci. Eng. A 682, 441–453 (2017). https://doi.org/10.1016/j.msea.2016.11.054

    Article  CAS  Google Scholar 

  17. Rodriguez, P.: Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984). https://doi.org/10.1007/BF02743993

    Article  Google Scholar 

  18. Caliari, F.R., et al.: Study of the Mechanical Behavior of an Inconel 718 Aged Superalloy Submitted to Hot Tensile Tests. SAE Technical Paper 2011-36-0328, (2011). https://doi.org/10.4271/2011-36-0328

  19. Maj, P., et al.: Microstructure and strain-stress analysis of the dynamic strain aging in Inconel 625 at high temperature. Met. Mater. Int. 23, 54–67 (2017). https://doi.org/10.1007/s12540-017-6264-1

    Article  CAS  Google Scholar 

  20. Prasad, Y.V.R.K., Rao, K.P., Sasidhara, S.: Hot Working Guide—A Compendium of Processing Maps. ASM International (2015). https://doi.org/10.1016/b978-0-08-033454-7.50019-x

  21. Liu, J., Cui, Z., Li, C.: Analysis of metal workability by integration of FEM and 3-D processing maps. J. Mater. Process. Technol. 205, 497–505 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.308

    Article  CAS  Google Scholar 

  22. Prasad, Y.V.R.K.: Processing maps: a status report. J. Mater. Eng. Perform. 12, 638–645 (2013). https://doi.org/10.1361/105994903322692420

    Article  Google Scholar 

  23. Murty, S.V.S.N., Rao, B.N.: On the development of instability criteria during hotworking with reference to IN 718. Mater. Sci. Eng. A 254, 76–82 (1998). https://doi.org/10.1016/S0921-5093(98)00764-3

    Article  Google Scholar 

  24. Sun, Y., Wan, Z., Hu, L., Ren, J.: Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map. Mater. Des. 86, 922–932 (2015). https://doi.org/10.1016/j.matdes.2015.07.140

    Article  CAS  Google Scholar 

  25. Zhou, G., Ding, H., Cao, F., Zhang, B.: A comparative study of various flow instability criteria in processing map of superalloy GH4742. J. Mater. Sci. Technol. 30, 217–222 (2014). https://doi.org/10.1016/j.jmst.2013.07.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kotkunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahalle, G., Kotkunde, N., Gupta, A.K., Singh, S.K. (2019). Analysis of Hot Workability of Inconel Alloys Using Processing Maps. In: Narayanan, R., Joshi, S., Dixit, U. (eds) Advances in Computational Methods in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9072-3_10

Download citation

Publish with us

Policies and ethics