Skip to main content

Simulation Paths of Anticancer Drugs on a Graphene Oxide Surface

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

  • 704 Accesses

Abstract

Graphene derivatives have occurred as central materials in the development of anticancer drug delivery systems. Graphene, graphene oxide and graphene quantum dots have been used for the effective delivery of different anticancer drugs. Graphene oxide (GO) nanomaterials have drew wide attention due to their surface properties. The oxygen-containing functional groups on the surface provide it modification by functionalization with molecules with focus to enlarge the range of biological applications with the impact on reduce toxicity effect. In this chapter, the properties of GO as a nanocarrier to load drug molecules and improve the solubility of carrier-drug systems effectively when functionalized with various hydrophilic molecules or polymers, implying potential applications in clinical treatments is performed in the frame of density functional theory (DFT) and molecular dynamics (MD) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. https://doi.org/10.1038/nmat1849 (2007)

    Article  CAS  Google Scholar 

  2. Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D., Velamakanni, A., An, S.J., Stoller, M., An, J., Chen, D., Ruoff, R.S.: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science. https://doi.org/10.1126/science.1162369 (2008)

    Article  CAS  Google Scholar 

  3. He, H., Klinowski, J., Forster, M., Lerf, A.: A new structural model for graphite oxide. Chem. Phys. Lett. https://doi.org/10.1016/S0009-2614(98)00144-4 (1998)

    Article  CAS  Google Scholar 

  4. Lerf, A., He, H., Forster, M., Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B. https://doi.org/10.1021/jp9731821 (1998)

    Article  CAS  Google Scholar 

  5. Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., Ruoff, R.S.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. https://doi.org/10.1021/nn901689k (2010)

    Article  CAS  Google Scholar 

  6. Lee, S.H., Dreyer, D.R., An, J., Velamakanni, A., Piner, R.D., Park, S., Zhu, Y., Kim, S.O., Bielawski, C.W., Ruoff, R.S.: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Commun. https://doi.org/10.1002/marc.200900641 (2010)

    Article  CAS  Google Scholar 

  7. Chunder, A., Liu, J., Zhai, L.: Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol. Rapid Commun. https://doi.org/10.1002/marc.200900626 (2010)

    Article  CAS  Google Scholar 

  8. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. https://doi.org/10.1007/s12274-008-8021-8 (2008)

    Article  CAS  Google Scholar 

  9. Liu, Z., Robinson, J.T., Sun, X., Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am. Chem. Soc. https://doi.org/10.1021/ja803688x (2008)

    Article  CAS  Google Scholar 

  10. Zhang, R., Hummelgård, M., Lv, G., Olin, H.: Real time monitoring of the drug release of rhodamine B on graphene oxide. Carbon. https://doi.org/10.1016/j.carbon.2010.11.026 (2011)

    Article  CAS  Google Scholar 

  11. Zhang, L., Xia, J., Zhao, Q., Liu, L., Zhang, Z.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. https://doi.org/10.1002/smll.200901680 (2010)

    Article  CAS  Google Scholar 

  12. Chen, L., Hu, P., Zhang, L., Huang, S., Luo, L., Huang, C.: Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci. China Chem. https://doi.org/10.1007/s11426-012-4620-z (2012)

    Article  CAS  Google Scholar 

  13. Manjunatha, B., Park, S.H., Kim, K., Kundapur, R.R., Lee, S.J.: In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-018-1420-9 (2018)

    Article  CAS  Google Scholar 

  14. Liang, L., Kong, Z., Kang, Z., Wang, H., Zhang, L., Shen, J.-W.: Theoretical evaluation on potential cytotoxicity of graphene quantum dots. ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.6b00390 (2016)

    Article  CAS  Google Scholar 

  15. Luan, B., Huynh, T., Zhao, L., Zhou, R.: Potential toxicity of graphene to cell functions via disrupting protein–protein interactions. ACS Nano. https://doi.org/10.1021/nn506011j (2015)

    Article  Google Scholar 

  16. Guo, R., Mao, J., Yan, L.-T.: Computer simulation of cell entry of graphene nanosheet. Biomaterials. https://doi.org/10.1016/j.biomaterials.2013.02.047 (2013)

    Article  CAS  Google Scholar 

  17. Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., Liu, Z., Huang, Q., Fan, C., Fang, H., Zhou, R.: Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. https://doi.org/10.1038/nnano.2013.125 (2013)

    Article  CAS  Google Scholar 

  18. Chong, Y., Ge, C., Yang, Z., Garate, J.A., Gu, Z., Weber, J.K., Liu, J., Zhou, R.: Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano. https://doi.org/10.1021/nn5066606 (2015)

    Article  CAS  Google Scholar 

  19. Mao, J., Guo, R., Yan, L.-T.: Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials. https://doi.org/10.1016/j.biomaterials.2014.03.087 (2014)

    Article  CAS  Google Scholar 

  20. Qin, W., Li, X., Bian, W.-W., Fan, X.-J., Qi, J.-Y.: Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials. https://doi.org/10.1016/j.biomaterials.2009.10.013 (2010)

    Article  CAS  Google Scholar 

  21. Wang, X., Liu, Y., Xu, J., Li, S., Zhang, F., Ye, Q., Zhai, X., Zhao, X.: Molecular dynamics study of stability and diffusion of graphene-based drug delivery systems. J. Nanomater. https://doi.org/10.1155/2015/872079 (2015)

    Google Scholar 

  22. Safdari, F., Raissi, H., Shahabi, M., Zaboli, M.: DFT calculations and molecular dynamics simulation study on the adsorption of 5-fluorouracil anticancer drug on graphene oxide nanosheet as a drug delivery vehicle. J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-017-0525-9 (2017)

    Article  CAS  Google Scholar 

  23. Shariatinia, Z., Mazloom-Jalali, A.: Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2018.10.047 (2019)

    Article  CAS  Google Scholar 

  24. Hasanzade, Z., Raissi, H.: Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. J. Mol. Liq. https://doi.org/10.1016/j.molliq.2018.01.159 (2018)

    Article  CAS  Google Scholar 

  25. Hasanzade, Z., Raissi, H.: Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug thioguanine on graphene oxide surface as a nanocarrier: density functional theory investigation and a molecular dynamics. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2017.05.245 (2017)

    Article  CAS  Google Scholar 

  26. Mahdavi, M., Rahmani, F., Nouranian, S.: Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. J. Mater. Chem. B. https://doi.org/10.1039/C6TB00746E (2016)

    Article  CAS  Google Scholar 

  27. Saikia, N., Deka, R.C.: Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide. J. Comput. Aided Mol. Des. https://doi.org/10.1007/s10822-013-9681-3 (2013)

    Article  CAS  Google Scholar 

  28. Mirhosseini, M.M., Rahmati, M., Zargarian, S.S., Khordad, R.: Molecular dynamics simulation of functionalized graphene surface for high efficient loading of doxorubicin. J. Mol. Struct. https://doi.org/10.1016/j.molstruc.2017.04.007 (2017)

    Article  CAS  Google Scholar 

  29. Tonel, M.Z., Martins, M.O., Zanella, I., Pontes, R.B., Fagan, S.B.: A first-principles study of the interaction of doxorubicin with graphene. Comput. Theor. Chem. https://doi.org/10.1016/j.comptc.2017.07.004 (2017)

    Article  CAS  Google Scholar 

  30. Vovusha, H., Banerjee, D., Yadav, M.K., Perrozzi, F., Ottaviano, L., Sanyal, S., Sanyal, B.: Binding characteristics of anticancer drug doxorubicin with two-dimensional graphene and graphene oxide: insights from density functional theory calculations and fluorescence spectroscopy. J. Phys. Chem. C. https://doi.org/10.1021/acs.jpcc.8b04496 (2018)

    Article  CAS  Google Scholar 

  31. Armaković, S., Armaković, S.J., Tomić, B.T., Pillai, R.R., Panicker, C.Y.: Adsorption properties of graphene towards the ephedrine—a frequently used molecule in sport. Comput. Theor. Chem. https://doi.org/10.1016/j.comptc.2017.12.009 (2018)

    Article  Google Scholar 

  32. Xin, W., Fengwen, M., Yinghui, W., Haiyan, Z.: Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation: a review. Comput. Mat. Sci. https://doi.org/10.1016/j.commatsci.2018.03.022 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors Miroslava Nedyalkova and Sergio Madurga are gratefully acknowledged financial support from the “Materials Networking” project, Horizon 2020 research and innovation programme under grant agreement No. 692146. Author M. Nedyalkova is grateful to the National Scientific Program ICT in SES, financed by the Ministry of Education and Science. The author M. Nedyalkova is gratefully acknowledged to the L’Oréal Program for Woman in Science. Financial support from Generalitat de Catalunya (Grant 2017SGR1033) and Spanish Structures of Excellence María de Maeztu program through grant MDM- 2017–0767 is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Nedyalkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nedyalkova, M., Romanova, J., Stoycheva, J., Madurga, S. (2019). Simulation Paths of Anticancer Drugs on a Graphene Oxide Surface. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_9

Download citation

Publish with us

Policies and ethics